期刊文献+

三维点云配准约束条件综述 被引量:2

Overview of three dimensional point Cloud registration constraints
下载PDF
导出
摘要 点云配准是通过匹配具有重叠部分的数据集,将不同坐标下的三维数据集变换到同一坐标系下,得到旋转变换矩阵和平移向量。通过各种约束条件,建立适当的模型。刚性配准在变换过程中不会发生形变,而非刚性配准需要考虑形变等问题。刚性配准和非刚性配准在约束条件上有所不同,文章从特征、显著性、正则化等约束条件,对刚性和非刚性配准约束条件进行了研究讨论。 Point Cloud registration is to obtain the rotation transformation matrix and the translation vector by matching the data sets with over-lapping parts, and transforming the 3D data sets of different coordinates into the same coordinate system. The rigid registration in the transformation process will not be deformed, nonrigid registration need to consider the deformation and other issues. Various constraint conditions can be used to establish the appropriate model. Rigid registration and nonrigid registration are different in the constraint conditions, the paper dis- cusses through the features, significant and regularization.
出处 《微型机与应用》 2016年第23期12-14,17,共4页 Microcomputer & Its Applications
关键词 配准 刚性 非刚性 形变 约束 registration rigid nonrigid deformation constraint
  • 相关文献

参考文献2

二级参考文献96

  • 1BUTALEB A S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer Vision Graphics Image Processing, 1989,47:22-32.
  • 2Dalsa Inc. CCD image capture technology databook[M]. CCD Image Sensors, Waterloo, Ontario, 1998.
  • 3Rusinkiewicz S, Hall-Holt O, Levoy M. Real-time 3D model acquisition[J]. ACM Transactions on Graphics. 2002, 21(3): Article No. 438.
  • 4Kolb A, Barth E, Koch R, et al. Time-of-flight sensors in computer graphics[C]//Proceedings of the Eurographics(state- of-the-art report). Aire-la-Ville: Eurographics Association Press, 2009:119-134.
  • 5Besl P J, Mckay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14(2): 239-256.
  • 6Rusinkiewicz S, Levoy M. Efficient variants of the 1CP algo- rithm[C] //Proceedings of International Conference on 3-D Digital Imaging and Modeling. Los Alamitos: IEEE Computer Society Press, 2001:145-152.
  • 7Bouaziz S, Tagliasacchi A, Pauly M. Sparse lterative Closest Point[J]. Computer Graphics Forum. 2013, 32(5): 113-123.
  • 8Rusu R B, Blodow N, Beetz M. Fast point feature fistograms (FPFH) for 3D registration[C]//Proceedings of IEEE Interna- tional Conference on Robotics and Automation (ICRA). Los Alamitos: IEEE Computer Society Press: 1EEE, 2009: 3212-3217.
  • 9Steder B, Rusu R B, Konolige K, et al. Point feature extraction on 3D range scans taking into account object boundaries[C] //Proceedings of International Conference on Robotics and Automation. Los Alamitos: 1EEE Computer Society Press, 2011:2601-2608.
  • 10Rusu R B, Bradski G, Thibaux R, et al. Fast 3D recognition and pose using the viewpoint feature histogram[C] //Proc- eedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Los Alamitos: IEEE Computer Society Press, 2010:2155-2162.

共引文献36

同被引文献13

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部