期刊文献+

无标度网络级联失效模型的负载重分配 被引量:4

A Research on the Load Redistribution Based on the Cascading Failure Model of Scale-free Network
下载PDF
导出
摘要 受实时网络中节点失效传播效应的影响,为防止失效情况的传播,有效避免网络崩溃现象的发生,提出一种改进的介数模型,并基于可控系数α定义节点的初始负载,同时由度和介数理论推导得出网络抗毁性相对较好的点α=0.6。通过在无标度网络上建模,比较在α<0.6以及α>0.6的条件下节点遭受攻击后的仿真结果,得出在α<0.6的情况下,初始负载小的节点受到攻击,相应网络的生存性较攻击初始负载大的节点低。在α>0.6的情况下,结果正好相反。而对于α=0.6的仿真情况,此时无论攻击哪种节点,网络都表现出较好的生存性。由此可以得出结论:在现实网络的规划中,将节点初始负载控制在α=0.6附近,可以保证网络在面对节点失效时,最大限度增强网络生存性和提高网络的抗毁性。 In order to prevent failure condition from spreading, and avoid the phenomenon of network col- lapse effectively under the influence of propagation effect of node failure, this paper proposes a model of modified betweenness, defines initial load by controllable coefficient a , and then describes a relatively good point a =0.6 by using the theory of degree and betweenness. Through modeling on scale-flee net- work, the paper can draw a simulation conclusion by comparing the nodes under the conditions of a 〈0. 6witha 〉0.6 subjected to attack. The simulation result shows that the node whose initial load point is low is subjected to attack, and its survivability of corresponding network is stronger than that of the node whose initial load is high under the conditions of a 〈0.6. The result is opposite under the conditions ofa 〉 0.6. But at the conditions of a :0.6, the survivability is comparatively good whatever what kind of node is subjected to attack. The result shows that the viability and the survivability can increase and improve fur- thest by controlling the coefficient of a 〉0.6 neighborly in real network planning.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2016年第6期88-92,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 航空预研基金(619010601)
关键词 失效 介数 可控系数 无标度网络 failure betweenness controllable coefficient scale-free network
  • 相关文献

参考文献4

二级参考文献63

  • 1MORENO Y, PASTOR-SATORRAS R, VAZQUEZ A, et al. Critical load and congestion instabilities in scale-free networks[ J]. Europhys Lett,2003,62(2) : 292-298.
  • 2ZHAO Liang,KWANGHO P,LAI Y C. Attack vulnerability of scalefree networks due to cascading breakdown [ J ]. Phys Rev E,2004,70 (3) :035101.
  • 3MOTYER A E. Cascade control and defense in complex networks[ J]. Phys Rev Lett,2004,93(9) :098701.
  • 4WANG Xiao-fan, XU J. Cascading failures in coupled map lattices [J]. Phys Rev E,2004,70(5) :056113.
  • 5WU Jian-jun,GAO Zi-you. Cascade and breakdown in scale-free networks with community structure [ J ]. Phys Roy E, 2006,74 ( 6 ) : 066111.
  • 6ZHAO Hui, GAO Zi-you. Cascade defense via navigation in scale free networks [ J ]. Eur Phys J B,2007,57:95-101.
  • 7BARABASI A L,ALBERT R,JEONG H. Mean-field theory for scalefree random networks [ J ]. Physica A, 1999,272 : 173-187.
  • 8ERDOS P, RENYI A. On the evolution of random graphs [ J ]. Publ Math Inst Hung Acad Sci,1960,5:17-60.
  • 9BROADBENT S R, HAMMERSLEY J M. Percolation processes : Ⅰ. crystals and mazes [ J ]. Proc Cambridge Philos Soc, 1957,53: 629-541.
  • 10ALBERT R, JEONG H, BARABASI A L. Error and attack tolerance of complex networks [ J ]. Nature,2000,408 (6794) :378- 382.

共引文献62

同被引文献55

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部