期刊文献+

回溯正则化分段正交匹配追踪算法 被引量:1

Backtracking regularized stage-wised orthogonal matching pursuit algorithm
下载PDF
导出
摘要 针对分段正交匹配追踪(STOMP)算法对信号重构效果较差的问题,提出一种回溯正则化分段正交匹配追踪(BR-STOMP)算法。首先,该算法采用正则化思想选取能量较大的原子,以减少阈值阶段候选集中的原子;然后,利用回溯对原子进行检验,并对解的支撑集中的原子重新筛选一次,同时删除对解的贡献较低的原子,提高算法的重构率;最后,对感知矩阵进行归一化处理,使算法更加简单。仿真结果表明:BR-STOMP算法与正交匹配追踪(OMP)算法相比较峰值信噪比提高8%~10%左右,运行时间减少70%~80%;与StOMP算法相比较,峰值信噪比提高19%~35%。BR-StOMP算法能够精确地恢复信号,重建效果优于OMP算法和StOMP算法。 The signal reconstitution result of Stage-wise Orthogonal Matching Pursuit (STOMP) algorithm is undesirable. In order to solve the problem, a new algorithm named Backtracking Regularized Stage-wise Orthogonal Matching Pursuit ( BR- STOMP) was proposed. Firstly, atoms with larger energy were selected using the regularization method to reduce the number of atoms in candidate set of threshold stage. Then atoms were tested using backtracking, and the atoms in support set of solutions were filtered again. The atoms with little contribution to the result were deleted to increase the reconstitution ratio. Finally, the sensing matrix was normalized to make the algorithm more simple. The simulation results show that, compared with the Orthogonal Matching Pursuit (OMP) algorithm, the Peak Signal-to-Noise Ratio (PSNR) of the BR-StOMP algorithm is improved by 8% to 10% and its run time is reduced by 70% to 80% ; compared with STOMP algorithm, the PSNR of the BR- STOMP algorithm is increased by 19% to 35%. The BR-StOMP algorithm can reconstruct the original signals accurately, and its reconstruction effect outperforms OMP algorithm and STOMP algorithm.
作者 李燕 王耀力
出处 《计算机应用》 CSCD 北大核心 2016年第12期3398-3401,共4页 journal of Computer Applications
基金 山西省自然科学基金资助项目(2013011015-1)~~
关键词 分段正交匹配追踪算法 正则化 回溯 归一化 峰值信噪比 Stage-wise Orthogonal Matching Pursuit (STOMP) algorithm regularization backtracking normalization Peak Signal-to-Noise Ratio (PSNR)
  • 相关文献

参考文献4

二级参考文献144

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献961

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部