期刊文献+

节能减排条件下电力系统多目标机组组合模型

Multi-objective generators commitment model of power system for energy conservation and emission reduction
下载PDF
导出
摘要 针对电力系统发电机组节能减排问题,通过建立连续变量和离散变量之间的关系,利用互补约束和最优化极值理论,构建了电力系统的多目标机组组合互补约束优化模型,并引入熵权法进行多目标决策,采用原对偶内点法进行了仿真验证。仿真结果表明:(1)以火电机组煤耗量,污染气体CO_2和SO_2排放量为优化目标的多目标机组组合模型,符合实际的工程需求。(2)利用模糊熵权法对建立的模型进行多目标决策,可实现节能、CO_2和SO_2排放目标之间的转化和相互协调,从而有效降低火电机组的煤耗量,同时也减少了污染气CO_2和SO_2的排放总量。 Aiming at the energy conservation and emission reduction problem of generation unit in power system, by establishing the relationship between continuous variables and discrete variables and using complementarity constraints and optimization extreme value theory, builds a complementarity constraint optimization model of multi-objective unit commitment in power system, and introduces entropy weight method to make multi-objective decision, adopts the original dual interior point method to validate. The simulation results show that: (1) The multi-objective generators commitment model with the optimization aim for coal consumption of coal-fired generators and the emission capacity of pollutant gas CO2 and SO2 meet the practical engineering requirements. (2) Using fuzzy entropy weight to make multi-objective decision can realize the conversion and mutual coordination between the energy saving and emission aims of CO2 and SO2, effectively reduce both the coal consumption of coal-fired generators and the total emission amounts of CO2 and SO2.
作者 丁林军 陈璟华 郭壮志 粱丽丽 李锦焙 DING Linjun CHEN Jinghua GUO Zhuangzhi LIANG Lili Li Jinbei(School of Automation, Guangdong University of Technology, Guangzhou Guangdong, 510006, China School of Electrical Information Engineering, Henan University of Engineering, Zhengzhou, Henan 451191, China)
出处 《宁夏电力》 2016年第5期15-21,共7页 Ningxia Electric Power
基金 广东省自然科学基金资助项目(S2013040013776)
关键词 机组组合 互补约束 光滑函数 熵权法 多目标 unit commitment complementarity constraint smooth function entropy weight method multi-objective
  • 相关文献

参考文献10

二级参考文献204

共引文献407

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部