期刊文献+

米勒循环改善增压直喷汽油机热效率的机理分析——部分负荷工况分析 被引量:16

Mechanism of Improvements on Thermal Efficiency of Turbocharged Direct Injection Gasoline Engines by Miller Cycle:Partial Load Analysis
下载PDF
导出
摘要 基于热力学第一定律和一维发动机循环仿真,对进气阀早关(EIVC)与进气阀迟关(LIVC)两种策略实现的米勒循环进行建模,在部分负荷工况下分别对应用高压缩比及EIVC和LIVC改善一款增压直喷汽油发动机热效率的效果及其机理进行比较分析。研究结果表明:提高几何压缩比增加了发动机的理论热效率从而改善了油耗,无论采用EIVC还是LIVC策略的米勒循环,都可以减小泵气损失,提升机械效率,同时降低缸内传热损失,进一步促进了米勒循环对油耗的改善。对比分析采用EIVC与LIVC时发动机热效率的影响因子发现,EIVC由于具有更高的机械效率和更少的传热损失,其油耗改善程度优于LIVC。 The improvement mechanism of fuel consumption at partial load of a turbocharged direct injection gasoline engine with elevated geometric compression ratio and Miller cycle by either early or late intake valve closing (EIVC or LIVC) was analyzed based on the first law of thermodynamics and one dimensional engine simulation. Increasing geometric compression ratio could increase the theoretical thermal efficiency and therefore reduce the fuel consumption. Use of Miller cycle may further reduce the fuel consumption, owing primarily to the reduced pumping and heat transfer loss. A comparison analysis of the effect of the EIVC and LIVC on thermal efficiency shows that EIVC could lead to higher mechanical efficiency and less heat release loss than LIVC, and hence its efficiency improvement is superior to LIVC.
出处 《内燃机工程》 EI CAS CSCD 北大核心 2016年第6期116-121,共6页 Chinese Internal Combustion Engine Engineering
基金 教育部博士点基金项目(20120073120059) 上海市浦江人才计划项目(13PJ1404300)
关键词 内燃机 米勒循环 油耗 热效率 进气阀早关 进气阀迟关 增压直喷汽油机 IC engine Miller cycle fuel consumption thermal efficiency earlyintake valve closing late intake valve closing turbocharged directinjection gasoline engine
  • 相关文献

参考文献1

二级参考文献12

  • 1Zhao J X, Xu M, Li M, et al. Design and optimization of an Atkinson cycle engine with the Artificial neural network method[J]. Applied Energy, 2012,92 : 492-502.
  • 2Shiga S, Hirooka Y, Yagi S. Effects of over-expansion cycle in a spark-ignition engine using late-closing of intake valve and its thermodynamic considerision of the mechanism[J]. International Journal of Automotive Technology, 2001,2(1) : 1-7.
  • 3Fontana G,Galloni E. Variable valve timing for fuel economy improvement in a small spark-ignition engine [J]. Applied Ener- gy, 2009,86:96-105.
  • 4Errico G D,Cerri T, Pertusi G. Multi-objective optimization of internal combustion engine by means of 1D fluid-dynamic models[J]. Applied Energy, 2011,88 : 767-777.
  • 5Alonso J M, Alvarruiz F. Combining neural networks and genetic algorithms to predict and reduce diesel engine ernissions[J]. IEEE Transactions on Evolutionary Computation,2007,11:46-55.
  • 6Verma R, Lakshminarayanan P A. A case study on the application of a genetic algorithm for optimization of engine parameters[J]. Pro- ceedings of Intemational Mechanical Engineering Part D:J. Automo- bile Engineering, 2006,220: 471-479.
  • 7Lampinen J. Cam shape optimisation by genetic algorithm[J]. Computer-Aided Design, 2003,35 : 727-737.
  • 8Heywood J B. Internal combustion engine fundamentals[M]. New York : McGraw-Hill, 1988.
  • 9Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation, 1996,4 ( 1 ) : 1-32.
  • 10Deb K. An efficient constraint handling method for genetic algorithms[J]. Comput. Methods Appl. Mech. Engrg, 2000, 186:311-338.

共引文献4

同被引文献80

引证文献16

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部