期刊文献+

一种高迁移率聚合物太阳能电池材料的合成及其器件表征 被引量:2

Synthesis and Characterization of a High Hole Mobility Material for Polymer Solar Cells
下载PDF
导出
摘要 设计合成了一种中等带隙共轭聚合物,聚[N-(2-己基癸基)-2,2'-二噻吩-3,3'-二甲酰亚胺-交替共聚-5,5-(2,5-双(3-癸氧基噻吩)-2-噻吩基)-噻吩)](PBTI3T-O),其光谱吸收覆盖波长从400 nm到720 nm,具有较宽的吸收范围,同时易溶于氯苯溶剂,利于溶液加工。PBTI3T-O与[6,6]-苯基-C71-丁酸异甲酯(PC71BM)复合薄膜的空穴迁移率为5.90×10-3cm2/(V·s),该迁移率高于其它大部分聚合物电池给体材料。由于PBTI3T-O较高的空穴迁移率,基于PBTI3T-O/PC71BM的器件在活性层厚度为237 nm时,效率可以达到5.56%。即使活性层膜厚进一步增加到约300 nm时,器件的效率仍能够保持其最高器件效率的97%,可见其具有在大面积加工工艺中的应用潜力。 One of the important prerequisites of large-area production is that the power conversion efficiency of polymer solar cells is insensitive to the active layer thickness. A novel donor-acceptor copolymer,named poly[N-( 2-hexyldecyl)-2,2'-bithiophene-3,3'-dicarboximide-alt-5,5-( 2,5-bis( 3-( decyloxy) thiophene-2-yl)-thiophene) ]( PBTI3T-O),with a moderate band gap has been designed and synthesized. PBTI3T-O shows a broad absorption range of 400 ~ 720 nm and good solubility in chlorobenzene( CB). The hole mobility of PBTI3T-O and [6,6]-phenyl-C71-butyric acid methyl ester( PC71BM) blend is 5. 90 × 10- 3cm2/( V·s),which is higher than those of most other materials. The excellent charge transport property leads to a power conversion efficiency of 5. 56% with a thick active layer of 237 nm. Furthermore,PBTI3T-O based device retains 97% of the highest efficiency with a thickness of ca. 300 nm,indicating its potential application in large-area production.
出处 《应用化学》 CAS CSCD 北大核心 2016年第12期1375-1382,共8页 Chinese Journal of Applied Chemistry
基金 国家自然科学基金资助项目(21574132 21504090)~~
关键词 聚合物太阳能电池 D-A型共聚物 活性层 厚膜 polymer solar cells donor-acceptor copolymer active layer thick film
  • 相关文献

参考文献2

二级参考文献37

  • 1Wang, Y., Yang, F., Liu, Y., Peng, R., Chen, S. and Ge, Z., Macromolecules, 2013, 46:1368.
  • 2Wang, Y., Liu, Y., Chen, S., Peng, R. and Ge, Z., Chem. Mater., 2013, 25:3196.
  • 3Qin, R.P., Song, G.L., Jiang, Y.R. and Bo, Z.S., Chem. J. Chin. Univ. Chin., 2012, 33:828.
  • 4Qu, J.F., Liu, J., Li, S.D., Xie, Z.Y. and Geng, Y.H., Chinese J. Polym. Sci., 2013, 31(5): 815.
  • 5Yuan, Y., Reece, Sharma, T.J., Poddar, P.S., Ducharme, S., Gruverman, A., Yang, Y. and Huang, J., Nat. Mater., 2011, 10:296.
  • 6Qin, R., Li, W., Li, C., Du, C., Veit, C., Schleiermacher, H.F., Andersson, M., Bo, Z., Liu, Z., Inganas, O., Wuerfel, U. and Zhang, F., J. Am. Chem. Soc., 2009, 131:14612.
  • 7Park, S.H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K. and Heeger, A.J., Nat Photon., 2009, 3:297.
  • 8Li, K., Li, Z., Feng, K., Xu, X., Wang, L. and Peng, Q., J. Am. Chem. Soc., 2013, 135:13549.
  • 9Li, W., Furlan, A., Hendriks, K.H., Wienk, M.M. and Janssen, R.A.J., J. Am. Chem. Soc., 2013, 135:5529.
  • 10You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C.C., Gao, J., Li, G. and Yang, Y., Nat. Commun., 2012, 4:1446.

共引文献2

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部