期刊文献+

疏水/超疏水硅表面的制备及液滴的运动特性 被引量:1

Preparation of hydrophobic/superhydrophobic Si surfaces and dynamic characteristics of drop moving on these surfaces
下载PDF
导出
摘要 以硅为基底,采用反应离子刻蚀技术和自组装技术制备疏水/超疏水表面,测量各表面的静态接触角和滚动角,借助高速摄像系统分析液滴滴落到不同硅表面的运动特性。结果表明,微柱高度不同,接触角随微柱间距的变化规律不同;滚动角随微柱高度的增加而增大,随微柱间距的增加而减小。对于液滴在其上能够发生滚动的硅表面,当水平放置时,液滴滴落后,铺展系数和回弹系数均随着跳动次数的增加逐渐减小,且滚动角越大,其减小速度越快;当硅表面倾斜放置时,若倾斜角小于滚动角,液滴滴落后的跳动距离越来越小,且滚动角越大,跳动距离减小的速度越快;若倾斜角大于滚动角,则液滴跳动距离越来越大,但滚动角越大,跳动距离增大的速度越小。 Based on the technology of reactive ion etching and self-assembled monolayers,the Si specimens with different hydrophobicity were attained.The static contact angle and roll angle of specimens are measured.After dripping,the dynamic characteristics of drop moving on the Si surface were researched by the high speed camera system.The results show that,when the heights of micro pillar arrays are different,the relationships between water contact angle and spacing of micro pillar arrays are different.The roll angle increases with the increase of pillars' height while decreases with the increase of pillars' spacing.In addition,after dripping down to the horizontal Si surface possessed roll angle,the spread coefficient and rebound coefficient of drop will decline gradually,and the larger the roll angle is,the quicker the decline rate.If the Si surface is inclined,and the incline angle is smaller than the roll angle,the jump distance will be smaller.The larger the roll angle is,the quicker the distance decreases.On the contrary,if the incline angle is bigger than the roll angle,the jump distance will increase.However,the larger the roll angle is,the slower the distance increases.
出处 《功能材料》 EI CAS CSCD 北大核心 2016年第11期11201-11209,共9页 Journal of Functional Materials
基金 国家自然科学基金资助项目(51335005 51275064 50975036)
关键词 静态接触角 滚动角 铺展系数 回弹系数 跳跃系数 static contact angle roll angle spread coefficient rebound coefficient jump coefficient
  • 相关文献

参考文献1

二级参考文献14

  • 1孙蓉,徐洮,薛群基.单晶硅表面改性及其微观摩擦学性能研究进展[J].摩擦学学报,2004,24(4):382-385. 被引量:15
  • 2管自生,张强.激光刻蚀硅表面的形貌及其对浸润性的影响[J].化学学报,2005,63(10):880-884. 被引量:19
  • 3Shrotriya P. , Allameh S. M. , Soboyejo W. O.. Mechanics of Materials[J], 2004, 36:35-44.
  • 4Song X., Zhai J., Wang Y., Jiang L.. J. Phys. Chem. B[J], 2005, 109(9) : 4048-4052.
  • 5Oner D. , McCarthy T. J.. Langmuir[J] , 2000, 16:7777-7782.
  • 6Yoshimitsu Z. , Nakajima A. , Watanabe T. , Hashimoto K.. Langmuir[ J], 2002, 18:5818-5822.
  • 7Srinivasan U. , Houston M. R. , Howe R. T. , Maboudian R.. Journal of Microelectromechanical Systems[J], 1998, 7:252-260.
  • 8Nakagawa T. , Soga M.. Jpn. J. Appl. Phys. [J], 1997, 36:6915-6921.
  • 9Wenzel R. N.. Ind. Eng. Chem. [J] ,1936, 28:988-994.
  • 10Cassie A. B. , Baxter S.. Trans. Faraday Soc. [J], 1944, 40:546-551.

共引文献4

同被引文献3

引证文献1

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部