期刊文献+

基于模因算法的多模盲均衡算法 被引量:2

Multi-modulus Blind Equalization Algorithm Based on Memetic Algorithm
下载PDF
导出
摘要 由于常模盲均衡算法(Constant modulus blind equalization,CMA)收敛速度和均方误差都不甚理想,且对多模信号均衡时会发生相位旋转,本文提出了基于模因算法的多模盲均衡算法(Multi-modulus blind equalization algorithm based on memetic algorithm,MA-MMA)。该算法将多模盲均衡算法(Multi-modulus blind equalization algorithm,MMA)代价函数的倒数作为模因算法(Memetic algorithm,MA)的适应度函数,利用MA全局优化机制和局部深度搜索能力,在每次全局搜索后对全部新产生的个体进行局部深度搜索,将全局和局部搜索得到的最优个体解向量作为MMA的初始最优权向量。仿真结果表明,与传统的CMA,MMA以及基于遗传算法的多模盲均衡算法相比,MA-MMA的收敛速度最快,稳态误差最小,输出信号星座图最清晰。 Due to the slow convergence speed ,large mean square error(MSE) and existing blind phase for the constant modulus blind equalization algorithm (CMA) ,a multi‐modulus blind equalization algorithm based on memetic algorithm (MA‐MMA) is proposed .In this algorithm ,the reciprocal of the cost func‐tion of multi‐modulus blind equalization algorithm (MMA) is defined as the fitness function of the memet‐ic algorithm (MA) .The solution vector of individual in the whole group is regarded as the initial weight vector of MMA .The vector of the individual in whole groups corresponding to the fitness function maxi‐mum is searched by the global information sharing mechanism and local depth search ability of MA and used as the initial optimum weight vector of MMA .After the weight vector of MMA is updated ,the op‐timal weight vector of MMA is obtained .Simulation results prove that compared with CMA ,MMA . The multi‐modulus blind equalization algorithm based on genetic algorithm (GA‐MMA) which has re‐cently been proposed ,the proposed MA‐MMA has the fastest convergence speed ,the smallest MSE ,and the clearest constellations of output signals .
出处 《数据采集与处理》 CSCD 北大核心 2016年第6期1127-1131,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61673222)资助项目 江苏省高校自然科学基金(13KJA510001)重大资助项目
关键词 多模算法 模因算法 智能优化算法 最优权向量 multi-modulus algorithm(MMA) memetic algorithm(MA) intelligence optimization algorithm optimal weight vector
  • 相关文献

参考文献2

二级参考文献23

  • 1Shalvi O, Weinstein E. Super-exponential methods for blind equalization[J]. IEEE Trans Inform Theo- ry,1993, 39(2) :505-519.
  • 2Guo Y C, Zhao X Q. Coordinate transformation based super exponential iterative blind equalization al- gorithm [C]//2010 Second Pacific-Asia Conference on Circuits, Communications and System (PACCS). Beijing: Institute of Electrical and Electronics Engi- neers, 2010:125-128.
  • 3Ning Xiaoling, Liu Zhong, Liu Zhikun, et al. New super-exponential iteration blind equalization algo- rithm for underwater acoustic communications[C]// 2011 International Conference on Image Analysis and Signal Processing (IASP). Hubei:IEEE Press,2011:468-473.
  • 4Li Jinming, Lu Jing. A modified super-exponential algorithm for joint blind equalization and carrier re covery[C] // Electronics, Communications and Con trol (ICECC), 2011 International Conference on. Ningbo : IEEE Press, 2011 : 2437-2440.
  • 5Zhang Pu, Yi Jin, He Sailing. Inverse transforma- tion optics and reflection analysis for two-dimensional finite-embedded coordinate transformation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010,16(2) : 427-432.
  • 6Yang Rui, Tang Wenxuan, Yang Hao, et al. A co- ordinate transformation-based broadband flat lens via mierostrip array[J]. IEEE Antennas and Wireless Propagation Letters, 2011,10(4) : 99-102.
  • 7Kwon Do-Hoon, Emiroglu C D. Low-profile embed- ded design of endfire scanning arrays with coordinate transformations [J]. Journal of Applied Physics, 2010,107(3) : 034508.1-034508.8.
  • 8陈宵.DNA遗传算法应用与研究[D].杭州:浙江大学,2010:19-24.
  • 9Zhao Yuanqing,Jin Xianhua,Liu Yong.The preemptive EDF optimization based on DNA-genetic algorithm[C]// 2nd Conference on Environmental Science and Information Application Technology.Wuhan,China:IEEE,2010:121-124.
  • 10Li Yongjie,Lei Jie.A feasible solution to the beamangle-optimization problem in radiotherapy planning with a DNA-based genetic algorithm[J].IEEE Transactions on Biomedical Engineering,2010,57(3):499-508.

共引文献6

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部