期刊文献+

基于Cam权重正交局部保持投影算法的人脸识别研究 被引量:1

Research on the face recognition based on orthogonal locality preserving projections algorithm of the Cam weighted distance
原文传递
导出
摘要 结合凸轮(Cam)权重距离和正交局部保持投影算法,提出了一种改进的Cam权重正交局部保持投影法。该算法将Cam权重距离代替正交局部保持投影算法在构造邻接图时采用的欧式距离,克服了处理高维数据中数据分布不均匀的问题。运用该改进算法对人脸图像进行特征提取,与局部保持投影算法和正交局部保持投影算法进行实验比较,结果证明,用改进的Cam权重正交局部保持投影法进行人脸识别得到的识别率更高,算法的性能效果更好。 By combining the Cam weighted distance and the orthogonal locality preserving projections algorithm, an improved Cam weighted orthogonal locality preserving projection method was proposed.In this algorithm, the Euclidean distance used to the orthogonal locality preserving projection algorithm is instead of the Cam weight distance, which overcomes the problem of processing the data distribution in high dimensional data.Compared with the local preserving projection algorithm and the orthogonal locality preserving projections algorithm,the results show that the improved Cam weighted orthogonal locality preserving projection method is better in face recognition and recognition rate.
出处 《互联网天地》 2016年第12期109-112,共4页 China Internet
关键词 Cam权重距离 人脸识别 正交局部保持投影算法 特征提取 Cam weighted distance face recognition orthogonal locality preserving projections algorithm feature extraction
  • 相关文献

参考文献4

二级参考文献30

  • 1鹿晓亮,陈继荣,黄戈祥.ICA和改进的SVM在有限集字符识别中的应用[J].计算机工程,2006,32(23):199-201. 被引量:3
  • 2Zhao W, Chellappa R, Phillips P J, et al. Face Recognition: A Literature Survey[J]. ACM Computing Surveys, 2003, 35(4): 399- 459.
  • 3Feng Guiyu, Hu Dewen, Zhou Zongtan. A Direct Locality Preserving Projections Algorithm for Image Recognition[J]. Neural Processing Letters, 2008, 27(3): 247-255.
  • 4Moghaddam B, Yang M H. Gender Classification with Support Vector Machines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 707-711.
  • 5He Xiaofei, Yan Shuicheng, Hu Yuxiao. Face Recognition Using Laplacian Faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 6Turk M, Pentland A. Eigenfaces for Recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 7Belhumeur P N, Hepanha J P, Kriegman D J. Eigenfaces vs Fisherfaxes: Recognition Using Class Specific Linear Projection[J] IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997 19(7): 711-720.
  • 8He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recognition Using Laplacian Faces[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 9Cai Deng, He Xiaofei, Han Jiawei, et al. Orthogonal Laplacianfaces for Face Recognition[J]. IEEE Trans. on Image Processing, 2006, 15(11): 3608-3614.
  • 10Lawrence N D, Seeger M, Herbrich R. Fast Sparse Gaussian Process Methods: The Informative Vector Machine[M]//Becker S, Thrun S, Obermayer K. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2003.

共引文献16

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部