期刊文献+

铝锂合金2099-T83长桁压损应力工程方法研究 被引量:3

Analysis on Engineering Methods of 2099-T83 Al-Li Alloy Shapes Crippling Stress
下载PDF
导出
摘要 介绍了两种长桁压损应力的工程方法:切割法和板元法。采用板元法和切割法分别对国内大型民用飞机结构中使用的材料为铝锂合金2099-T83的典型长桁进行了计算。在标准试验机上,完成36件试验件的验证试验;并用数据处理验证了试验的正确性。计算结果与试验结果对比表明对于传统"Z"型长桁截面,切割法和板元法结构均小于试验结果,但相当接近,比值分别达到了94.0%和98.8%;对于新型"2"型长桁截面,两种方法均不适用,最大误差达25.8%和33.5%。因此,对于"2"型长桁试验数据进行处理及拟合,对飞机设计手册中的切割法公式进行修正,最终新公式适合不同厚度下铝锂合金2099-T83的"2"型长桁压损应力的工程估算。 Two major engineering methods which can been traditionally used for calculating Al-Li alloy 2099-T83 shapes crippling stress are briefly described: the gerard method and the plate segment method. Two methods above are employed to calculate the crippling stress of two Al-Li Alloy 2099-T83 shapes applied in structure of domestic civil aircraft. A number of 35 specimens in two sections are tested in reference machine,and the testing results are verified in mathematics data processing: average value,standard deviation and coefficient of dispersion.Comparison between calculation and test results shows that the methods are conservative for Z-section shape,the ratios of calculating to testing are 94. 0% and 98. 8% respectively,but bad for 2-section shape,the calculating results are all unacceptable,the most ratios are 25. 8% and 33. 5% respectively. Otherwise,the Gerard method equation quoted from aircraft design manua is modified by using test results of 2-section shape. The new modified equation can been applied to 2-section shape in different thicknesses,which can also provide a reference for engineering application.
出处 《科学技术与工程》 北大核心 2016年第35期299-302,共4页 Science Technology and Engineering
基金 中航工业技术创新基金(2014A62353R)资助
关键词 典型长桁 压损应力 工程法 铝锂合金 试验验证 typical shape crippling stress engineering method Al-Li alloy modification equation
  • 相关文献

参考文献5

二级参考文献24

  • 1王美芹,许在文,柳兆涛,王炯华,刘全坤.扁挤压筒的挤压力及应力场的光弹性分析[J].实验力学,2004,19(3):376-380. 被引量:7
  • 2张铎,姜晋庆,南宫自军.薄壁结构后屈曲应力分析[J].西北工业大学学报,1995,13(4):495-499. 被引量:2
  • 3Gerard G, Becker H. Handbook of Structural Stability: Part Ⅲ-Buckling of Curved Plates and Shells[R]. NACA TN-3783, 1957.
  • 4Beeker H. Handbook of Structural Stability: Part VI-Strength of Stiffened Curved Plates and Shells[R]. NACA TN-3786, 1958.
  • 5Munroe J, Wilkins K, Gruber M. Integral Airframe Structures (IAS)-Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs[R]. NASA/CR 2000 209337, 2000.
  • 6Pettit R G, Wang J J, Toh C. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs[R]. NASA/CR-2000-209342, 2000.
  • 7Chuin S C, Paul A W, Anthony R I. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages[R]. NASA/CR 1999-209115, 1999.
  • 8Vercammen R W, Ottens H H. Full-scale Fuselage Panel Tests[R]. NLR-TP 98148, 1998.
  • 9铁摩辛柯SP,盖莱JM.弹性稳定理论[M]. 2版.北京:科学出版社,1965: 418-457.
  • 10Bryan Tweedy,Scott Sellmeyer. Static strength comparison ofriveted versus friction stir welded stiffened panels : AIAA 2006-2266 [ C ] //47th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference. Newport RhodeIsland, USA : American Institute of Aerospace and Astronautics,2006: 1-15.

共引文献56

同被引文献26

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部