期刊文献+

压缩感知鬼成像中观测矩阵构造 被引量:2

Construction of measurment matrix in compressive sensing ghost imaging
原文传递
导出
摘要 为了提高压缩感知鬼成像(CSGI)的成像效果,解决现阶段观测矩阵存在的稳定性差、数据庞大和不满足非负性等问题,对观测矩阵的构造方法进行研究。首先,介绍确定性随机序列的产生方法和性质,可以用作观测矩阵,满足有限等距要求。针对光强的非负性,提出利用偶次幂的余弦函数产生确定性随机序列的方法,构造观测矩阵并证明其性质;然后,通过仿真验证该观测矩阵的正确性,研究了序列的初始值和函数的幂对矩阵重构性能的影响;最后,搭建实验平台,对比常用的高斯随机矩阵(GM),分析本文方法的适用性和优缺点。实验结果表明,在鬼成像中,利用本文所构造的随机矩阵,重构图像峰值信噪比(PSNR)与GM相当,但存储的数据量大大减少,可满足鬼成像系统的快速高效、简单方便和成本低等要求。 In order to enhance the image quality of compressive sensing ghost Imaging (CSGI ) and solve the existing problems of measurement matrix in this stage,a new cons truction method of measurement matrix is presented in this paper.First,the princ iples and properties of deteiministic random sequences are introduced,which can be used as meas urement matrix and satisfy the restricted isometry property (RIP).Aiming at the nonnegativeness of light intensity,based on the deteiministic random sequences achieved by even quadratic cosine function ,a new construction method of measurement matrix is applied.Then,according to the theory of logistic map,the properties and accuracy of deteiministic random matrix are proved by simulation and the inf luences of initial value and the power of cosine function on the reconstruction property are analyzed.Finally,compared with Gaussian matrix,the experimental system platform is built,and the applicability and merit of deteiministic random matrix are analyzed.Experimental results indicate that the peak signal to noise ratio (PSNR) of the reconstructed image is 38.7dB and t he amount of data is reduced by 4096times compared with Gaussian matrix.It can satisfy the system requirements of stabilization,convenie nce and rapid speed in ghost imaging.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第12期1352-1356,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61271376) 安徽省自然科学基金(1208085MF114)资助项目
关键词 压缩感知(CS) 鬼成像 观测矩阵 确定性随机序列 余弦函数 compressive sensing (CS) ghost imaging measurement matrix deteiministic random se-quences cosine function
  • 相关文献

参考文献11

二级参考文献379

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献1065

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部