期刊文献+

带自适应精英扰动及惯性权重的反向粒子群优化算法 被引量:24

Opposition-based particle swarm optimization with adaptive elite mutation and nonlinear inertia weight
下载PDF
导出
摘要 针对反向粒子群优化算法存在的易陷入局部最优、计算开销大等问题,提出了一种带自适应精英粒子变异及非线性惯性权重的反向粒子群优化算法(OPSO-AEM&NIW),来克服该算法的不足。OPSO-AEM&NIW算法在一般性反向学习方法的基础上,利用粒子适应度比重等信息,引入了非线性的自适应惯性权重(NIW)调整各个粒子的活跃程度,继而加速算法的收敛过程。为避免粒子陷入局部最优解而导致搜索停滞现象的发生,提出了自适应精英变异策略(AEM)来增大搜索范围,结合精英粒子的反向搜索能力,达到跳出局部最优解的目的。上述2种机制的结合,可以有效克服反向粒子群算法的探索与开发的矛盾。实验结果表明,与主流反向粒子群优化算法相比,OPSO-AEM&NIW算法无论是在计算精度还是计算开销上均具有较强的竞争能力。 An opposition-based particle swarm optimization with adaptive elite mutation and nonlinear inertia weight(OPSO-AEMNIW) was proposed to overcome the drawbacks, such as falling into local optimization, slow convergence speed of opposition-based particle swarm optimization. Two strategies were introduced to balance the contradiction between exploration and exploitation during its iterations process. The first one was nonlinear adaptive inertia weight(NIW), which aim to accelerate the process of convergence of the algorithm by adjusting the active degree of each particle using relative information such as particle fitness proportion. The second one was adaptive elite mutation strategy(AEM), which aim to avoid algorithm trap into local optimum by trigging particle's activity. Experimental results show OPSO-AEMNIW algorithm has stronger competitive ability compared with opposition-based particle swarm optimizations and its varieties in both calculation accuracy and computation cost.
作者 董文永 康岚兰 刘宇航 李康顺 DONG Wen-yong KANG Lan-lan LIU Yu-hang LI Kang-shun(Computer School, Wuhan University, Wuhan 430072, China Faculty of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000, China College of Information, South China Agricultural University, Guangzhou 510642, China)
出处 《通信学报》 EI CSCD 北大核心 2016年第12期1-10,共10页 Journal on Communications
基金 国家自然科学基金资助项目(No.61170305 No.61672024)~~
关键词 一般性反向学习 粒子群优化 自适应精英变异 非线性惯性权重 generalized opposition-based learning particle swarm optimization adaptive elite mutation nonlinear inertia weight
  • 相关文献

参考文献3

二级参考文献16

  • 1王晖.区域变换搜索的智能算法研究[D].武汉:武汉大学,2011.
  • 2Storn R, Price K. Differential efficient adaptive Scheme for continuous spaces [R]. Tech. evolution: A simple aria global optimization over Rep. TR-95-012, ICSI, USA, 1995.
  • 3Das S,Suganthan P N. Differential evolution:A survey of the state-of-the-art[J]. IEEE Transactions on Evo- lutionary Computation, 2011,15 (1) : 4-31.
  • 4Rahnamayan S,Tizhoosh H R,Salama M M A. Oppo- sition-Based differential evolution[J]. IEEE Transac- tions on Evolutionary Computation, 2008, 12 ( 1 ) : 64- 79.
  • 5Qin A K, Huang V L,Suganthan P N. Differential e- volution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Ev- olutionary Computation, 2009,13 (2) : 398-417.
  • 6Zhang Jingqiao, Sanderson A C. JADE: Adaptive dif- ferential evolution with optional external archive [J]. IEEE Transactions on Evolutionary Computation, 2009,13(5) : 945-958.
  • 7Brest J , Greiner S, Boskovic B,et al. Self-adapting con- trol parameters in differential evolution: A comparative study on numerical benchmark problems [J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (6) :646-657.
  • 8Wang Yong, Cai Zixing, Zhang Qingfu. Differential evolution with composite trial vector generation strate- gies[J]. IEEE Transactions on Evolutionary Compu- tation, 2011,15( 1 ) :55-66.
  • 9Tizhoosh H R. Opposition-based learning: A new scheme for machine intelligence [ C]//International Conference on Computational Intelligence for Model- ling, Control and Automation. Piscataway: Inst of Elec and Elec Eng Computer Society,2005:695-701.
  • 10Wang Hui, Wu Zhijian, Rahnamayan S, et al. Enhan- cing particle swarm optimization using generalized op- position-based learning [J]. Information Sciences, 2011,181 : 4699-4714.

共引文献115

同被引文献181

引证文献24

二级引证文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部