期刊文献+

基于多普勒谱优化的HRWS SAR系统通道相位偏差估计算法 被引量:3

Phase Bias Estimation Algorithm for HRWS SAR System in Azimuth Based on Doppler Spectrum Optimization
下载PDF
导出
摘要 方位多通道SAR系统通过抑制多普勒模糊,能够实现高分辨率和宽测绘带(HRWS)对地观测。针对通道间幅相偏差会导致成像结果中出现目标模糊分量的问题,该文提出一种通道相位偏差估计算法。该算法利用通道间相位偏差会造成多通道重构方位谱在主瓣内展宽的特性,通过优化多谱勒谱能够实现通道相位偏差的有效估计。该算法在通道相位偏差估计前不需要进行多普勒中心估计,减小了由多普勒中心估计不准引入的误差,并且在低信噪比的情况下仍然具有良好的估计性能。基于仿真数据和实测数据的实验验证了该文算法的有效性。 By suppressing the Doppler ambiguity, the along-track multi-channel Synthetic Aperture Radar (SAR) system can simultaneously achieve High-Resolution and Wide-Swath (HRWS) imaging. However, the presence of unavoidable amplitude and phase bias tends to the absence of ambiguous signals in the SAR images. To address this issue, a novel phase bias estimation algorithm based on Doppler spectrum optimization is proposed. By exploiting the fact that phase bias can cause Doppler spectrum broadened, the phase bias can be successfully estimated by optimizing the Doppler spectrum. The Doppler centroid estimation can be avoided before phase biases estimation, which reduces the estimation accuracy caused by the inaccurate Doppler centroid. The proposed algorithm can achieve better performance when Signal to Noise Ratio (SNR) is low. The effectiveness of the algorithm is validated by experimental results carried out on simulated data and SAR data collected by an air- borne multi-channel system.
作者 王志斌 刘艳阳 李真芳 陈筠力 WANG Zhibin LIU Yanyang LI Zhenfang CHEN Junli(National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China Shanghai Institute of Satellite Engineering, Shanghai 201109, China Shanghai Academy of Space Technology, Shanghai 201109, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第12期3026-3033,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61471276 61601298 61671355)~~
关键词 合成孔径雷达 高分辨率宽测绘带 多通道 数字波束形成 通道相位偏差估计 多普勒谱优化 Synthetic Aperture Radar (SAR) High-Resolution and Wide-Swath (HRWS) Multi-channel DigitalBeam-Forming (DBF) Phase bias estimation Doppler spectrum optimization
  • 相关文献

参考文献8

二级参考文献80

  • 1Cantafio L J(Ed.). Space-Based Radar Handbook. Boston: Artech House. 1989.
  • 2Callaghan G D and Longstaff I D. Wide-swath space-borne SAR using a quad-element array. IEE Proc. Radar, Sonar, and Navig., 1999, 146(3): 159-165.
  • 3Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing. IEEE Transactions on Geoscienee Remote Sensing, 2008, 46(1): 31-46.
  • 4Younis. M and Wiesbeck W. Digital beamforming in SAR systems. IEEE Transactions on Geoscience Remote Sensing, 2003, 41(7): 1735-1739.
  • 5Krieger G, Gebert N, and Moreira A. Ambiguous SAR signal reconstruction from non-uniform displaced phase centre sampling. IEEE Transactions on Geoscience Remote Sensing Letters, 2004, 1(4): 260-264.
  • 6Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing. IEEE Transactions on Geoscienee Remote Sensing, 2008, 46(9): 31-46.
  • 7Li Z, Wang H, and Bao Z. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR system. IEEE Transactions on Geoscience Remote Sensing Letters, 2005, 2(1): 81-86.
  • 8Li Z, Wang H, Bao Z, and Liao G. Performance improvement for constellation SAR using signal processing techniques. IEEE Transactions on Aeros. Eletro. System, 2006, 42(2): 436-452.
  • 9Soumekh M and Himed B. SAR-MTI processing of Multi-Channel Airborne Radar Measurement (MCARM) data. Proceedings of the 2002 IEEE Radar Conference, Long Beach, CA, 2002: 24-28.
  • 10Zhang Z, Xing M, Ding J, and Bao Z. Focusing the parallel bistatic SAR data using the analytic transfer function in wavenumber domain. IEEE Transactions on Geoscience Remote Sensing, 2007, 45(11): 3633-3645.

共引文献33

同被引文献8

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部