期刊文献+

纯磨玻璃密度结节肺腺癌的CT三维定量分析 被引量:41

Quantitative CT analysis of early-stage lung adenocarcinoma with pure ground-glass opacity
原文传递
导出
摘要 目的:探讨结节三维定量分析对表现为纯磨玻璃结节(pGGN)的早期肺腺癌病理分级的预测价值。方法回顾性分析长征医院2012年6月至2015年10月经手术病理证实的CT表现为pGGN的肺腺癌105例,共110个pGGN,其中不典型腺瘤样增生(AAH)22个、原位腺癌(AIS)28个、微浸润性腺癌(MIA)28个、浸润性腺癌(IAC)32个。利用联影CT高级后处理工作站对结节进行三维容积测量,得到最大横断面长径、面积、体积、平均CT值、质量,最小CT值,最大CT值,2%、5%、25%、50%、75%、95%、98%位数CT值。多组之间以及浸润前后分组之间测量指标满足正态分布及方差齐性的采用单因素方差分析,不满足的数据采用Kruskal-Wallis H检验分析,并对各单独变量进行ROC曲线分析,再以结节是否为浸润性病变为因变量,结节的最大截面长径、面积、体积、最大CT值为自变量进行Logistic回归分析。结果 AAH、AIS、MIA、IAC 4组间结节大小参数(包括最大横截面长径、面积、体积),平均CT值,质量,5%、25%、50%、75%、95%、98%百分位数CT值,最大CT值差异有统计学意义(P〈0.05)。浸润前病变与浸润病变之间各结节大小参数,平均CT值,质量,2%、25%、50%、75%、95%、98%位数CT值,最大CT值差异有统计学意义(P〈0.05),对各单独变量进行ROC曲线分析,其中曲线下面积(AUC)大于0.7的变量为:结节最大截面长径(AUC=0.754,P〈0.001)、面积(AUC=0.787,P〈0.001)、体积(AUC=0.788,P〈0.001)、质量(AUC=0.822,P〈0.001)以及98%位数CT值(AUC=0.714,P〈0.001)、最大CT值(AUC=0.759,P〈0.001),Logistic回归分析显示,最大截面长径[优势比(OR)=1.143,95%CI 1.027~1.273, P=0.015]和最大CT值(OR=1.005,95%CI 1.002~1.009, P=0.001)是pGGN为浸润性病变的危险因素,对Logistic逐步回归预测概率进行ROC曲线分析,曲线下面积为0.793(P〈0.001)。结论三维定量分析得到pGGN的大小参数、质量、最大CT值对pGGN的病理分级具有预测作用。 Objective To investigate if quantitative analysis of early-stage lung adenocarcinoma manifesting as a pure ground-glass nodule (pGGN) on CT can predict its pathological grading. Methods One hundred and five patients who had undergone curative resection for lung adenocarcinoma, manifesting as a pure ground-glass nodule, were retrospectively enrolled from June 2012 to October 2015 in Changzheng Hospital. Among 110 lesions, there were 22 typical adenomatous hyperplasia (AAH), 28 adenocarcinoma in situ (AIS), 28 minimally invasive adenocarcinoma (MIA), and 32 invasive adenocarcinoma (IAC). We evaluated all CT images using United Imaging CT advanced post-processing workstation,and all pGGNs were analyzed as follows: long diameter and area of maximum section,volume,mean CT number,mass, minimum CT number, maximum CT number,and 2%,5%,25%,50%,75%, 95%, 98% percentile CT number. Variables between different pathological grades and between before and after invasion satisfying the law of normal distribution and homoscedasticity were compared using one-way AVOVA,other variables were compared using Kruskal-Wallis H test. Each individual variable were enrolled in ROC analysis,and Logistic regression analysis was performed by taking if pGGN was invasive lesion as the dependent variable, and long diameter and area of maximum section,volume and maximum CT number were taken as independent variables. Results The lesion size(including long diameter and area of maximum section,volume), mean CT number,mass, 5%, 25%, 50%, 75%, 95%, 98%percentile CT number and maximum CT number were statistically different among four pathological types of AAH, AIS, MIA and IAC(P〈0.05). Between preinvasive lesion and invasive lesion, the lesion size, mean CT number, mass, 2%, 25%, 50%, 75%, 95%, 98%percentile CT number and maximum CT number were also statistically different(P〈0.05). ROC analysis was taken for the individual variables, variables which area under the curve (AUC) of more than 0.7 were the long diameter of maximum section (AUC=0.754, P〈0.001),area of maximum section volume(AUC=0.787, P〈0.001), volume(AUC=0.788, P〈0.001), mass(AUC=0.822, P〈0.001) and 98% percentile CT number(AUC=0.714, P〈0.001), maximum CT number (AUC= 0.759,P〈0.001) . Logistic regression analysis showed that the long diameter of maximum section(OR=1.143,95%CI 1.027-1.273, P=0.015)and the mean CT number (OR=1.005, 95% CI 1.002-1.009, P=0.001)were independent risk factors that predicting pGGN was invasive lesion, the ROC analysis was performed based on the predicted probability of Logistic regression model, and the AUC was 0.793(P〈0.001). Conclusion Quantitative analysis of early-stage lung adenocarcinoma manifesting as a pure ground-glass nodule on CT to get its size, the maximum CT number and mass,can be useful for predicting pathological grading.
作者 曹恩涛 于红 范丽 肖湘生 刘靖 李西 Cao Entao Yu Hong Fan Li Xiao Xiangsheng Liu Jing Li Xi(Department of Radiology and Nuclear Medicine, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China Present address: Department of Radiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215002, China)
出处 《中华放射学杂志》 CAS CSCD 北大核心 2016年第12期940-945,共6页 Chinese Journal of Radiology
基金 基金项目:上海市科委重点项目(15411952000) 上海市卫生局重点项目(2012020) 上海申康医院发展中心项目(SHDC12014227) 总后勤部保健专项科研课题(CWS14BJ07)
关键词 肺肿瘤 体层摄影术 X线计算机 病理学 Lung neoplasms Tomography,X-ray computed Pathology
  • 相关文献

参考文献4

二级参考文献14

  • 1滑炎卿,张国桢,丁其勇,倪国兴,陆孝禹.CT肿瘤血管成像对周围型肺癌的诊断价值[J].中华放射学杂志,2004,38(7):701-705. 被引量:52
  • 2党亚萍,刘刚,王红,李苗.PET/CT对肺内结节诊断及治疗的临床价值[J].中华肿瘤杂志,2004,26(11):685-687. 被引量:21
  • 3熊曾,周漠玲,周辉,刘进康.低剂量螺旋CT筛查高危人群早期肺癌的Meta分析[J].中华放射学杂志,2006,40(4):437-442. 被引量:20
  • 4Suzuki K, Kusumoto M, Watanabe S, et al. Radiologic classification of small adenocarcinoma of the lung: radiologicpathologic correlation and its prognostic impact. Ann Thomc Surg, 2006, 81:413-420.
  • 5Park CM, Goo JM, Lee HJ,et al. Nodular ground-glass opacity at thin-section CT: histologic correlation and evaluation of change at follow-up. Radiographics, 2007,27 : 391-408.
  • 6Kim HY, Shim YM, Lee KS, et al. Persistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisons. Radiology,2007,245 : 267-275.
  • 7Gianluigi S, Carmelo C, Luca B, et al. Ground-glass opacity: high-resolution computed tomography and 64-multi-slice computed tomography findings comparison. Eur J Radiol, 2009, in press.
  • 8Vazquez MF, Flieder DB. Small peripheral glandular lesions detected by screening CT for lung cancer: a diagaaostic dilemma for the pathologist. Radiol Clin North Am,2000,38: 579-589.
  • 9Soda H, Yoichi N, Nakatomi K, et all Stepwise progression from ground-glass opacity towards invasive adenoeareinoma: long-term follow-up of radiological findings. Lung Cancer, 2008, 60: 298 -301.
  • 10柳学国,王勇,梁明柱,张皓,陈翠芬,秦培鑫,钟国梅,何燕丽,刘晓彬,韩铭钧,易先平.周围型肺癌与肺动静脉和支气管关系的螺旋CT表现[J].中华放射学杂志,2008,42(6):592-596. 被引量:8

共引文献226

同被引文献205

引证文献41

二级引证文献293

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部