期刊文献+

基于独立成分分析与概率神经网络的滚动轴承故障识别方法的研究 被引量:4

Research on Fault Identification for Rolling Bearing Based on Independent Component Analysis and Probabilistic Neural Network
下载PDF
导出
摘要 为了提高滚动轴承故障诊断的准确性和适应性,文中提出快速独立成分分析(fast independent component analysis,FICA)和概率神经网络(probabilistic neural network,PNN)相结合的滚动轴承故障识别方法。首先,针对滚动轴承的故障振动信号非高斯特点,利用FICA算法提取出滚动轴承振动信号特征;其次,为了提高概率神经网络分类的适应性,采用正交最小二乘算法训练概率神经网络结构,基因算法优化概率神经网络参数。实验表明,该集合型FICA-OPNN故障诊断方法较传统概率神经网络(FICA-PNN)有更高的分类准确性和适应性。 An ensemble approach based on fast independent component analysis (FICA) and probabilistic neural network was proposed to improve the accuracy and adaptability of rolling bearing fault detection.Firstly, the feature of the vibration signals of the rolling bearing, usually non-Gaussian, was extracted by the FICA algorithm.Then Orthogonal Least Squares method was adopted to train the probabilistic neural network structure and genetic algorithms optimize probabilistic neural network parameters to improve the classification adaptability of probabilistic neural network.The experimental results show that the accuracy and adaptability of classification by FICA-OPNN are better than that of traditional probabilistic neural network (FICA-PNN).
作者 王宏 徐长英 邓芳明 WANG Hong XU Chang-ying DENG Fang-ming(Engineering Training Center, Nanchang Aviation University, Nanchang 330063, China Electrical and Electronic Engineering Institute, East China JiaoTong University, Nanchang 330013, China Institute of Electrical and Automation Engineering, Hefei University of Technology, Hefei 230009, China)
出处 《仪表技术与传感器》 CSCD 北大核心 2016年第12期161-164,共4页 Instrument Technique and Sensor
关键词 滚动轴承 故障识别 振动信号 独立成分分析 概率神经网络 rolling bearing fault identification vibration signal, independent component analysis probabilistic neural network
  • 相关文献

参考文献6

二级参考文献73

  • 1程军圣,于德介,杨宇.基于SVM和EMD包络谱的滚动轴承故障诊断方法[J].系统工程理论与实践,2005,25(9):131-136. 被引量:25
  • 2陈蜜,伭剑辉,李德仁,秦前清,贾永红.独立分量分析的图像融合算法[J].光电工程,2007,34(6):82-87. 被引量:9
  • 3杨福生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2001,165-195.
  • 4Strang G, Nguyen T. Wavelet and Filter Banks[M]. Wellesley-Cambridge Press, 1996.
  • 5Freudinger L C, Lind R, Brenner M J. Correlation filtering of modal dynamics using the Laplace wavelet [A]. Proe. of 16th International Modal Analysis Conference[C]. Santa Barbara, California, 1998: 868- 877.
  • 6Zi Yanyang, Chen Xuefeng, He Zhengjia, et al. Vibration based modal parameters identification and wear fault diagnosis using Laplace wavelet [J]. Key Engineering Materials, 2005, 293-294: 183-190.
  • 7Li Hongliang, Wang Sunfan. Impulse Response Feature Extraction Based on Genetic Algorithm with Correlation Filtering [A]. ISCIT [C]. 2005 (1): 594- 598.
  • 8Dong H B, Chen X F, Li B, et al. Rotor crack detection based on high-precision modal parameter identification method and wavelet finite element model [J]. Mechanical Systems and Signal Processing, 2009, 23: 869-883.
  • 9HAMEED Z,HONG Y,CHO Y,et al. Condition monitoring and fault detection of wind turbines and related algorithms:a review [J]. Renewable and Sustainable Energy Reviews,2009,13(1 ):1-39.
  • 10AMIRAT Y,BENBOUZID M,AL-AHMAR E,et al. A brief sta- tus on condition monitoring and fault diagnosis in wind ener- gy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009,13 (9) : 2629-2636.

共引文献97

同被引文献38

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部