期刊文献+

一种基于大气层外解析动力学模型的最优迭代制导方法 被引量:4

An Optimal Iterative Guidance Method Based on Exoatmospheric Analytical Dynamic Model
下载PDF
导出
摘要 固体火箭在实际飞行过程中其发动机参数会产生较大的摄动偏差,而传统的摄动制导很难保证较高的制导精度,甚至会发散。另外,采用动力学数值积分的显式制导算法进行实时计算又会带来较大的计算量,从而难以满足实际飞行的要求。针对这一问题,提出了一种基于大气层外解析动力学模型的最优迭代制导方法。首先在大气层外推导了解析动力学模型,然后基于Pontryagin极大值原理推导了最省燃料的推力控制方法,以共轭状态向量和飞行时间为迭代变量给出了带有多种终端约束的迭代制导算法。仿真分析了发动机参数和火箭初始状态在最大正偏差以及最大负偏差情况下迭代制导精度,并进行了蒙特卡罗打靶仿真。仿真结果表明,提出的基于大气层外解析动力学模型的迭代制导算法计算时间少、制导精度高、鲁棒性强,具有较好的工程应用价值。 The large perturbation deviations of engine parameters of solid rocket would appear in the process of actual flight,which is hard to guarantee superior guidance precision and even causes divergency. Additionally,a large amount of calculation would emerge in terms of explicit guidance of adopting numerical integration of dynamic model,which is hard to satisfy the requirements of the actual flight. To solve the problems,this paper presents an optimal iterative guidance method based on exoatmospheric analytical dynamics model. On the basis of flight dynamics model,the thrust control method of the most-saving fuel is deduced based on the Pontryagin maximum principle,and the iteration guidance algorithm whose iterative variables are conjugate state vector and flight time is given under the condition of a variety of terminal constraints. The iterative guidance precision is analyzed by simulation in the case of maximum positive and negative deviation concerned with solid rocket engine parameters and initial state,followed by monte carlo targeting simulation. The simulation results demonstrate that the proposed iterative guidance method based on exoatmospheric analytical dynamics model displays less computation,high precision,strong robustness and superior engineering application.
作者 郑旭 高长生 陈尔康 荆武兴 Zheng Xu Gao Changsheng Chen Erkang Jing Wuxing(Department of Astronautics Engineering, Harbin Institute of Technology, Harbin 150001, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第6期1093-1100,共8页 Journal of Northwestern Polytechnical University
关键词 固体火箭 迭代制导方法 解析解 极大值原理 蒙特卡罗打靶 solid rocket iterative guidance method analytical solution Pontryagin maximum principle Monte Carlo targeting
  • 相关文献

参考文献4

二级参考文献22

  • 1刘云凤,罗俊,赵世范.闭路制导在小型固体运载火箭中的应用[J].航天控制,2005,23(3):46-50. 被引量:7
  • 2王树魁.国外弹药发展的特点和趋势[J].弹箭技术,1997,9(1):1-8. 被引量:5
  • 3Chandler D C, Smith I E. Development of the iterative guidance mode with its application to various vehicles and missions[J]. Journal of Spacecraft and Rockets, 1967, 4(7): 898-903.
  • 4Lawden D F. Optimal trajectories for space navigation[M]. London: Butterworths, 1963:1-98.
  • 5Jezewski D J. An optimal, analytic solution to the linear-gravity, constant-thrust trajectory problem[J]. Journal of Spacecraft and Rockets, 1971, 8(7): 793-796.
  • 6Jezewski D J. N-burn optimal analytic trajectories. AIAA-1972-929, 1972.
  • 7Calise A J, Melamed N, Lee S. Design and evaluation of a three-dimensional optimal ascent guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6): 867-875.
  • 8Dukeman G A. Atmospheric ascent guidance for rocket-powered launch vehicles. AIAA-2002-4559, 2002.
  • 9Dukeman G A, Hill A. Rapid trajectory optimization for the Ares I launch vehicle. AIAA-2008-6288, 2008.
  • 10Lu P, Sun H S, Tsai B. Closed-loop endo-atmospheric ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2): 283-294.

共引文献44

同被引文献30

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部