摘要
固体火箭在实际飞行过程中其发动机参数会产生较大的摄动偏差,而传统的摄动制导很难保证较高的制导精度,甚至会发散。另外,采用动力学数值积分的显式制导算法进行实时计算又会带来较大的计算量,从而难以满足实际飞行的要求。针对这一问题,提出了一种基于大气层外解析动力学模型的最优迭代制导方法。首先在大气层外推导了解析动力学模型,然后基于Pontryagin极大值原理推导了最省燃料的推力控制方法,以共轭状态向量和飞行时间为迭代变量给出了带有多种终端约束的迭代制导算法。仿真分析了发动机参数和火箭初始状态在最大正偏差以及最大负偏差情况下迭代制导精度,并进行了蒙特卡罗打靶仿真。仿真结果表明,提出的基于大气层外解析动力学模型的迭代制导算法计算时间少、制导精度高、鲁棒性强,具有较好的工程应用价值。
The large perturbation deviations of engine parameters of solid rocket would appear in the process of actual flight,which is hard to guarantee superior guidance precision and even causes divergency. Additionally,a large amount of calculation would emerge in terms of explicit guidance of adopting numerical integration of dynamic model,which is hard to satisfy the requirements of the actual flight. To solve the problems,this paper presents an optimal iterative guidance method based on exoatmospheric analytical dynamics model. On the basis of flight dynamics model,the thrust control method of the most-saving fuel is deduced based on the Pontryagin maximum principle,and the iteration guidance algorithm whose iterative variables are conjugate state vector and flight time is given under the condition of a variety of terminal constraints. The iterative guidance precision is analyzed by simulation in the case of maximum positive and negative deviation concerned with solid rocket engine parameters and initial state,followed by monte carlo targeting simulation. The simulation results demonstrate that the proposed iterative guidance method based on exoatmospheric analytical dynamics model displays less computation,high precision,strong robustness and superior engineering application.
作者
郑旭
高长生
陈尔康
荆武兴
Zheng Xu Gao Changsheng Chen Erkang Jing Wuxing(Department of Astronautics Engineering, Harbin Institute of Technology, Harbin 150001, China)
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2016年第6期1093-1100,共8页
Journal of Northwestern Polytechnical University
关键词
固体火箭
迭代制导方法
解析解
极大值原理
蒙特卡罗打靶
solid rocket
iterative guidance method
analytical solution
Pontryagin maximum principle
Monte Carlo targeting