期刊文献+

基于改进BOW模型的图像分类技术 被引量:1

Image categorization based on improved model of BOW
下载PDF
导出
摘要 针对传统BOW(Bag of Words)模型用于场景图像分类时的不足,通过引入关联规则的MFI(Maximum Frequent Itemsets)和Topology模型对其进行改进。为了突出同类图像的视觉单词,提取同类图像的MFI后,对其中频繁出现的视觉单词进行加权处理,增强同类图像的共有特征。同时,为了提高视觉词典的生成效率,利用Topology模型对原始模型进行分工并行处理。通过COREL和Caltech-256图像库的实验,证明改进后的模型提高了对场景图像的分类性能,并验证了其Topology模型的有效性和可行性。 Aimed at the defects of the traditional bag of words representation algorithm on the scene image categorization, an improved model, based on the maximum frequent itemsets (MFI) from association rule and the Topology model, is proposed. To highlight the visual words and fully express the common image characteristics in one category, the improved algorithm weights the frequent visual words after extracting MFI from one category. Meanwhile, by using the Topology model to make the progress of producing visual word dictionary more efficient, the original model can be distributed into each component by parallel operation. Experimental results based on COREL and Caltech-256 database demonstrate a better classification performance for scene image and shows the effectiveness and the feasibility of the Topology model.
作者 陈杰 王诚
出处 《南京邮电大学学报(自然科学版)》 北大核心 2016年第6期24-29,38,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
关键词 图像分类 BOW模型 MFI TOPOLOGY image categorization bag of words (BOW) model maximum frequent itemsets ( MFI ) Topology
  • 相关文献

参考文献4

二级参考文献55

  • 1张建萍,刘希玉.基于聚类分析的K-means算法研究及应用[J].计算机应用研究,2007,24(5):166-168. 被引量:124
  • 2邓华锋,刘云生,肖迎元.分布式数据流处理系统的动态负载平衡技术[J].计算机科学,2007,34(7):120-123. 被引量:13
  • 3Winn J.Variational message passing and its applications[D].England:University of Cambridge,2003.
  • 4Treisman A.Gelade G.A featureintcgration theory of attention[J].Cognitive Psychology.1980.12(1):97-136.
  • 5Olira A,Torralba A.Modeling the shape of the scene:A holistic representation of the spatial envelope[J].International Journal on Computer Vision,2001,42 (3):145-175.
  • 6Vogel J,Schiele B.Natural scene retrieval based on a semantic modeling step[C] //Proc of the ACM Int Conf on Image and Video Retrieval.New York:ACM,2004:207-215.
  • 7Blei D,Ng A,Jordan M.Latent Dirichlet allocation[J].Journal of Machine Learning Re,arch.2003.3 (5):993-1022.
  • 8Hofmann T.Unsupervised learning by probabilistie latent semantic analysis[J].Machine l.earning.2001,42(1):177-196.
  • 9Li Feifei,Perona P.A Bayesian hierarchical model for learning natural scene categories[C] //Proc of the IEEE Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2005:524-531.
  • 10Anna Bosch,Andrew Zisserman,Xavier Munoz.Scene classification via pLSA[C] //Proc of the European Conf on Computer Vision.Berlin:Springer,2006:517-530.

共引文献102

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部