期刊文献+

基于局部特征的图像分类方法 被引量:8

Image Classification Methods Based on Local Features
下载PDF
导出
摘要 为了有效地组织、管理和浏览大规模的图像资源,提出了一种利用局部特征进行图像分类的方法。通过深入分析和比较常见的局部特征,选用合适的局部特征构建视觉单词库。这些视觉单词具有很好的平移、旋转、尺度不变性,并对噪声有一定的抵抗能力。借鉴文本分类领域的向量空间模型进行图像的表示,并设计出了相应的分类算法。标准图像库上的实验结果表明,该方法在图像分类中有效,有较高的实用价值。 In order to organize, manage and browse large-scale image databases effectively, an image classification algorithm based on local features is proposed. After analyzing of several fashionable local features at present, we choose the suitable features to construct the visual vocabulary. These visual words are invariant to image scale and rotation, and are shown robust to addition of noise and changes in 3D viewpoint. We also describe two approaches to represent objects using these visual words. As baselines for comparison, some additional classification systems also have been implemented. The performance analysis on the obtained experimental results demonstrates that the proposed methods are effective and highly valuable in practice.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2017年第1期69-74,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61402023) 北京市教委科研计划(SQKM201610011010) 北京市自然科学基金(4162019) 北京市科技计划(Z161100001616004)
关键词 凝聚聚类 分类器 图像分类 局部特征 视觉单词 agglomerative clustering classifier image classification local features visual word
  • 相关文献

参考文献6

二级参考文献93

  • 1张建伟,夏德深.基于双水平集的图像分割模型[J].计算机研究与发展,2006,43(1):120-125. 被引量:11
  • 2Brown M, Lowe D G. Automatic panoramic image stitching using invariant features [J].International journal of Computer Vision, 2007, 74(1): 59-73.
  • 3Lowe D G. Object recognition from local scale-invariant features [C] //Proceedings of the 7th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 1999:1150-1157.
  • 4Schaffalitzky F, Zisserman A. Multi view matching for unordered image sets, of how do I organize my holiday snaps?[C] //Proceedings of the 7th European Conference on Computer Vision. Berlin: Springer, 2002:414-431.
  • 5Snavely N, Seitz S M, Szeliski R. Photo tourism: exploring photo collections in 3D [J]. ACM Transactions on Graphics, 2006, 25(3):835-846.
  • 6Florack L M J, Ter Haar Romeny B M, Koenderink J J, el al. General intensity transformations and differential invariants [J]. Journal of Mathematical Imaging and Vision, 1994, 4(2):171-187.
  • 7Mindru F, Tuytelaars T, Van Gool L, et al. Moment invariants for recognition under changing viewpoint and illumination [J]. Computer Vision and Image Understanding, 2004, 94(1/3): 3-27.
  • 8Baumberg A. Reliable feature matching across widely separated views [C] //Proceedings of IEEB Computer Society Conference on Computer Vision and Pattern Recognition. 1.os Alamitos: IEEE Computer Society Press, 2000, 1: 1774- 1781.
  • 9Freeman W T, Adelson E H. The design and use of steerable filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(9): 891-906.
  • 10Carneiro G, Jepson A D. Multi scale phase based local features [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2003: 736-743.

共引文献70

同被引文献86

引证文献8

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部