期刊文献+

中文微博评价对象识别研究

Research on Opinion Target Extraction in Chinese Microblogs
下载PDF
导出
摘要 旨在对中文微博文本的句子中评价对象进行识别。评价对象识别是指识别出评论中情感表达所针对的对象,进行评价对象的识别有助于对事件发展状况进行监控管理。目前,针对中文微博领域评价对象识别的研究较少。由于微博文本的句子简短、语言表达不够规范且表达的观点缺少带情感倾向性的词语(评价词),因而传统的通过评价词来找到评价对象的方法不适用于微博文本。利用词性分析提取和过滤评价对象候选词,并结合语义分析对句子中的候选词进行分类,基于相似的句子有着相似的评价对象的假设,采用候选词的相似性迭代算法识别中文微博文本句子中的评价对象。实验结果表明,通过深入分析微博文本的语言特征提出的方法,提高了对评价对象识别的精度。 It focuses on extracting opinion targets in Chinese microblogs. Opinion target extraction aims to find the object to which the o- pinion is expressed, helping to monitor and control the development of events. At present,there are few researches on opinion target extraction in Chinese microblogs. Due to short text span,colloquial writing style and the lack of words with emotional tendency ( opinion words) in Microblogs,the traditional approaches rely on opinion words are not suitable for microblogs. In this paper, we use the part-of -speech analysis to extract and filter candidate words,and combine semantic analysis to classify candidate words. Based on the assumption that similar messages may have similar opinion targets, a similarity iterative algorithm of candidate words is proposed to extract opinion targets. Experimental results show that by deeply analyzing language features of Microblogs, the proposed method has improved high ac- curacy.
作者 张景 牛耘
出处 《计算机技术与发展》 2017年第1期6-10,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(61202132)
关键词 评价对象 候选词提取 语义分析 相似性计算 opinion target candidate extraction semantic analysis similarity calculation
  • 相关文献

参考文献4

二级参考文献54

  • 1沈家煊.语言的“主观性”和“主观化”[J].外语教学与研究,2001,33(4):268-275. 被引量:2303
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642.
  • 4Pang B.,Lee L.,Vaithyanathan S.Thumbs Up Sentiment Classification Using Machine Learning Techniques[C]//Proceedings of EMNLP-2002.2002:79-86.
  • 5Li S.,Huang C.,Zong C. Multi-domain Sentiment Classification with Classifier Combination[J].Journal of Computer Science and Technology (JCST),2011,26(1):25-33.
  • 6Kim S.,Hovy E.Extracting Opinions,Opinion Holders,and Topics Expressed in Online News Media Text[C]//Proceedings of the ACL Workshop on Sentiment and Subjectivity in Text.2006:1-8.
  • 7Lafferty J.,McCallum A.,Pereira F. Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proceedings of IC-ML-2001.2001:282-289.
  • 8Jakob N.,Gurevych I.Extracting Opinion Targets in a Single and Cross-Domain Setting with Conditional Random Fields[C]//Proceedings of EMNLP-2010.2010:1035-1045.
  • 9Hu M,Liu B.Mining Opinion Features in Customer Reviews[C]//Proceedings of AAAI-2004.2004:755-760.
  • 10Titov I.,McDonald R.Modeling Online Reviews with Multi-grain Topic Models[C]//Proceedings of WWW-2008.2008:111-120.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部