期刊文献+

时间序列数据挖掘的相似性度量综述 被引量:78

Survey on similarity measurement of time series data mining
原文传递
导出
摘要 在时间序列数据挖掘中,时间序列相似性是一个重要的概念.对于诸多算法而言,能否与一种合适的相似性度量方法结合应用,对其挖掘性能有着关键影响.然而,至今仍没有统一的度量相似性的方法.对此,首先综述了常用的相似性度量方法,分析了各自的优点与不足;其次,讨论了近年来出现的时序相似性的新解释及其度量方法;再次,探讨了相似性度量在时序挖掘任务中的应用以及与挖掘精度的关系;最后给出了关于时序相似性度量进一步的研究方向. Similarity measure is an important concept in time series data mining. For many data mining algorithms,whether it can be used in combination with a suitable time series similarity measure method has a key influence on mining performance. However, there is no uniform definition and measure of similarity. Therefore, we first introduce the most popular similarity measures, and analyze the advantages and disadvantages of each measure. Then, the new interpretations of the time series similarity and the corresponding measures are discussed. Furthermore, we analyze the applications of similarity measures in clustering, classification and regression of time series data, and the relationship between similarity measure and mining precision. Finally, several directions for the future research are given.
出处 《控制与决策》 EI CSCD 北大核心 2017年第1期1-11,共11页 Control and Decision
基金 国家自然科学基金项目(61501229) 中央高校基本科研业务费专项资金项目(NS2015091 NJ20160013)
关键词 时间序列数据挖掘 时间序列相似性 相似性度量 挖掘精度 time series data mining time series similarity similarity measure mining accuracy
  • 相关文献

参考文献7

二级参考文献50

  • 1李爱国,覃征.大规模时间序列数据库降维及相似搜索[J].计算机学报,2005,28(9):1467-1475. 被引量:20
  • 2吴绍春,吴耿锋,王炜,蔚赵春.寻找地震相关地区的时间序列相似性匹配算法[J].软件学报,2006,17(2):185-192. 被引量:25
  • 3AGRAWAL R,FALOUSTOS C,SWAMI A.Efficient similarity search in sequence databases[C] // Proceedings of 4th International Conference on Foundations of Data Organization and Algorithms.Berlin:Springer,1993:69-84.
  • 4YASUSHI S,MASATOSHI Y,CHRISTOS F.FTW:Fast Similarity search under the time warping distance[C] // Proceedings of the 24th ACM SIGMOD-SIGACTSIGART Symposium on Principles of Database Systems.New York:ACM,2005:326-337.
  • 5NGUYEN Q V,DUONG T A.Combining SAX and piecewise linear approximation to improve similarity search on financial time series[C] // Proceedings of the 2007 International Symposium on Information Technology Convergence.Washington,D.C:IEEE Computer Society,2007:145-152.
  • 6MICHAEL D M,PJIGNESH M P.An efficient and accurate method for evaluating time series similarity[C] // Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data.New York:ACM,2007:569-580.
  • 7PIERRE-FRANCOIS M.Time warp edit distance with stiffness adjustment for time series matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):306-318.
  • 8GAVRILOV M,ANGUELOV D,INDYK P.Mining the stock market:Which measure is best?[C] // ACM International Conference on Knowledge Discovery and Data Mining.New York:ACM,2000:487-496.
  • 9Roddick J E Spiliopoulou M. A survey of temporal knowledge discovery paradigms and methods[J]. Trans on Data Engineering, 2002, 14(4): 750-767.
  • 10Berndt D J, Clifford J. Using dynamic time warping to find patterns in time series[C]. Working Notes of the Knowledge Discovery in Databases Workshop. Seatle, 1994: 359-370.

共引文献127

同被引文献664

引证文献78

二级引证文献289

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部