期刊文献+

时空LBP矩和Dempster-Shafer证据融合的双模态情感识别 被引量:2

Dual-modality Emotion Recognition Model Based on Temporal-spatial LBP Moment and Dempster-Shafer Evidence Fusion
下载PDF
导出
摘要 针对视频情感识别中存在运算复杂度高的缺点,提出一种基于时空局部二值模式矩(Temporal-Spatial Local Binary Pattern Moment,TSLBPM)的双模态情感识别方法。首先对视频进行预处理获得表情和姿态序列;然后对表情和姿态序列分别提取TSLBPM特征,计算测试序列与已标记的情感训练集特征间的最小欧氏距离,并将其作为独立证据来构造基本概率分配(Basic Probability Assignment,BPA);最后使用Dempster-Shafer证据理论联合规则得到情感识别结果。在双模态表情和姿态情感数据库上的实验结果表明,本文提出的时空局部二值模式矩可以快速提取视频图像的时空特征,能有效识别情感状态。与其他方法的对比实验也验证了本文融合方法的优越性。 To overcome the deficiency of high complexity performance in video emotion recognition, we propose a novel Local Binary Pattern Moment method based on Temporal-Spatial for feature extraction of dual-modality emotion recognition. Firstly, preprocessing is used to obtain the facial expression and posture sequences. Secondly, TSLBPM is utilized to extract the features of the facial expression and posture sequences. The minimum Euclidean distances are selected by calculating the features of the testing sequences and the marked emotion training sets, and they are used as independent evidence to build the Basic Probability Assignment (BPA). Finally, according to the rules of Dempster-Shafer evidence theory, the expression recognition result is obtained by fused BPA. The experimental results on the FABO expression and posture dual-modality emotion database show the Temporal-Spatial Local Binary Pattern Moment feature of the video image can be extracted quickly and the video emotional state can be effectively identified. What’s more, compared with other methods , the experiments have verified the superiority of fusion.
出处 《光电工程》 CAS CSCD 北大核心 2016年第12期154-161,共8页 Opto-Electronic Engineering
基金 国家自然科学青年基金项目(61300119) 国家自然科学基金重点项目(61432004) 安徽省自然科学基金项目(1408085MKL16)
关键词 视频感情识别 双模态情感识别 时空局部二值模式矩 DEMPSTER-SHAFER证据理论 video emotion recognition dual-modality emotion recognition temporal-spatial lbp moment Dempster-Shafer evidence theory
  • 相关文献

参考文献5

二级参考文献82

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2郝颖明,朱枫.2维Otsu自适应阈值的快速算法[J].中国图象图形学报(A辑),2005,10(4):484-488. 被引量:121
  • 3于昕,韩崇昭,潘泉,谢明志.一种基于D-S推理的异源信息目标识别方法[J].系统工程与电子技术,2007,29(5):788-790. 被引量:14
  • 4Ferzli R, Karam L J. A No-Reference Objective Image Sharpness Metric Based on the Notion of Just Noticeable Blur (JNB). IEEE Trans on Image Processing, 2009, 18(4) : 717-728.
  • 5Hassen R, Wang Zhou, Salama M. No-Reference Image Sharpness Assessment Based on Local Phase Coherence Measurement// Proc of the IEEE International Conference on Acoustics, Speech and Sig- nal Processing. Dallas, USA, 2010:2434-2437.
  • 6Chen M J, Bovik A C. No-Reference Image Blur Assessment Using Multiscale Gradient. EURASIP Journal on Image and Video Process- ing, 2011, 3:1-11.
  • 7Li C, Yuan W, Bovik A C, et al. No-Reference Blur Index Using Blur Comparisons. Electronics Letters, 2011,47(17) : 962-963.
  • 8Ciancio A, da Costa A L N T. No-Reference Blur Assessment of Digital Pictures Based on Multi-Feature Classifiers. IEEE Trans on Image Processing, 2011, 20(1) : 64-75.
  • 9Morrone M C, Owens R A. Feature Detection Rom Local Energy. Pattern Recognition Letters, 1987, 6 ( 5 ) : 303-313.
  • 10Venkatesh S, Owens R A. An Energy Feature Detection Scheme// Pmc of the IEEE International Conference on Image Process. Singa- pore, Singapore, 1989 : 553-557.

共引文献81

同被引文献4

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部