期刊文献+

基于迭代白化的含噪盲源分离技术研究 被引量:2

Research on Noisy Blind Sources Separation Based on Iteration Whitening
下载PDF
导出
摘要 针对超定含噪盲源分离问题,提出了一种基于迭代的白化算法,并将该算法作为白化预处理算法应用于FastICA算法中。该算法可以准确估计每路含噪混合信号中的噪声方差,经过白化后能够完全去除含噪信号中有用信号的相关性。实验仿真结果表明:该算法的抗噪声性能优于基于特征值分解的准白化FastICA算法,尤其是在每路含有不同噪声方差的情况下。 To solve the problem of overdetermined noisy blind sources separation, a whitening algorithm based on iteration is proposed, and it is used as whitening preproeessing in FastICA. The proposed algorithm can accurately estimate the noise variance of each channel noisy mixed signal, and the correlation of useful signals can be completely removed from the noisy signal after quadratic whitening. Simulation results show that the anti-noise performance of the algorithm proposed in this paper is greatly improved over the quasi-whitened FastICA algorithm based on eigen value decomposition, especially when each channel has different noise variance.
机构地区 信息工程大学
出处 《信息工程大学学报》 2016年第6期681-685,共5页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61401511)
关键词 含噪盲源分离 噪声方差估计 FASTICA算法 白化 noisy blind sources separation noise variance estimation FastICA whitening
  • 相关文献

参考文献1

二级参考文献6

  • 1Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[ M]. New York: John Wiley & Sons, 2001.
  • 2HyvSrinen A, Oja E. A fast fixed-point algorithm for independent component analysis[ J]. Neural Computation, 1997 , 9(7):1483-1492.
  • 3Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[ J] . IEEE Transactions on NeuralNetworks, 1999,10(3) : 626-634.
  • 4Zarzoso V,Comon P, Kallel M. How fast is FastICA[ C]//Proc. EUSIPCO-2006, XIV European Signal Processing Confer-ence. 2006 : 38-53.
  • 5Zarzoso V,Comon P. Comparative speed analysis of FastICA [ C ]//Proc. ICA-2007 , 7th International Conference on Inde-pendent Component Analysis and Signal Separation. 2007 : 293-300.
  • 6Zarzoso V,Comon P. Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast with Algebra-ic Optimal Step Size[ J]. IEEE Transactions on Neural Networks, 2010,21(2) : 248-261.

共引文献9

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部