摘要
研究了具有不同时变输入时延的二阶连续多智能体系统的一致性问题。首先,通过变量转换,将系统的收敛性问题转化为误差系统的稳定问题;然后,通过对系统进行变换,将二阶系统稳定性问题转换为等价系统的稳定性问题。通过构造李雅普诺夫函数,基于线性矩阵不等式(LMI)的方法,给出在无向固定拓扑条件下,系统达到一致的充分条件。最后,仿真实例证明了结果的有效性。
A consensus problem is discussed about the second-order multi-agent system with mult i-ple time-varying input delays. Firs tly ,by variable transformution, the convergence problem of sec-ond-order multi-agent systems is converted into the stability problem of an error system. Then,by system transformution, the stability problem of the second-order system is converted into the sta-bi l ity problem of the equivalent system. Based on linear matrix inequalities (LMI ) ,by construc-ting Lyapunov-Krasovskii functions,sufficient conditions of consensus in undirected networks are obtained. Atlast,examples are given to demonstrate the effictiveness of the conclusion.
出处
《复杂系统与复杂性科学》
EI
CSCD
北大核心
2016年第4期102-107,共6页
Complex Systems and Complexity Science
基金
国家自然科学基金(61273048)
关键词
一致性
多智能体系统
不同时变输入时延
LMI
consensus
multi-agent systems
multiple time-varying input delays
linear matrix in-equalities