期刊文献+

基于SIFT特征矢量图的快速图像拼接方法 被引量:10

Fast Image Stitching Method Based on SIFT Feature Vector Image
下载PDF
导出
摘要 为了减少图像拼接方法的计算复杂度,提出一种基于尺度不变特征变换(SIFT)特征矢量图的快速图像拼接方法.该方法首先结合相位相关算法,确定待拼接图像的重叠区域,限定SIFT特征点检测范围;然后考虑特征点的空间位置信息,构建SIFT特征矢量图像,以便在特征匹配时限制匹配点的搜索范围,快速获得匹配点对.实验结果表明,该方法减少了大量的不必要搜索,提高了图像拼接速度. In order to reduce the computational complexity of image stitching method, we proposed a fast image stitching method based on scale invariant feature transform (SIFT) feature vector image. Firstly, the method combined the phase correlation algorithm to determine the overlapping regions of the images to be stitched, and the detection range of the SIFT feature points was defined. Then we considered the spatial location information of feature points, constructed the SIFT feature vector images in order to limit the searching ranges in the feature matching, and got the matching points quickly. Experimental results show that the new method reduces a lot of unnecessary search, and improves the speed of image stitching.
作者 陈月 赵岩 王世刚 CHEN Yue ZHAO Yan WANG Shigang(College of Communication Engineering, J ilin University, Changchun 130012, China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第1期116-122,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61271315)
关键词 图像拼接 尺度不变特征变换 特征矢量图 特征匹配 image stitching scale invariant feature transform (SIFT) feature vector image feature matching
  • 相关文献

参考文献6

二级参考文献82

  • 1严大勤,孙鑫.一种基于区域匹配的图像拼接算法[J].仪器仪表学报,2006,27(z1):749-750. 被引量:13
  • 2汪松,王俊平,万国挺,王乐.基于SIFT算法的图像匹配方法[J].吉林大学学报(工学版),2013,43(S1):279-282. 被引量:5
  • 3郭磊,李克强,马莹,王建强,连小珉.基于定向二维插值的逆投影变换方法[J].清华大学学报(自然科学版),2006,46(5):712-715. 被引量:7
  • 4Lowe D. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004 60(2): 91-110.
  • 5Barreto J P andVasconcelos F. sRD-SIFT: keypoint detection and matching in images with radial distortion[J]. IEEE Transactions on Robotics, 2012, 28(3): 752-760.
  • 6Tian Qi, Zhang Shi-liang, Zhou Wen-gang, et al.. Building descriptive and discriminative visual codebook for large-scale image applications[J]. Multimedia Tools and Applications, 2011, 51(2): 441-477.
  • 7Huang C R, Chen C R and Chung P C. Contrast context histogram: an effcient discriminating local descriptor for object recognition and image matching[J]. Pattern Recognition, 2008, 41(10): 3071-3077.
  • 8Mikolajczyk K and Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 9Heikkila M, Pietikalnen M, and Schmid C. Description of interest regions with local binary patterns[J]. Pattern Recognition, 2009, 42(3): 425-436.
  • 10Gupta R, Patti H, and Mittal A. Robust order-based methods for feature description[C]. Proceedings of the IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition, San Francisco, 2010: 334-341.

共引文献109

同被引文献78

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部