期刊文献+

Predicting standard penetration test N-value from cone penetration test data using artificial neural networks 被引量:7

Predicting standard penetration test N-value from cone penetration test data using artificial neural networks
下载PDF
导出
摘要 Standard Penetration Test(SPT) and Cone Penetration Test(CPT) are the most frequently used field tests to estimate soil parameters for geotechnical analysis and design.Numerous soil parameters are related to the SPT N-value.In contrast,CPT is becoming more popular for site investigation and geotechnical design.Correlation of CPT data with SPT N-value is very beneficial since most of the field parameters are related to SPT N-values.A back-propagation artificial neural network(ANN) model was developed to predict the N6o-value from CPT data.Data used in this study consisted of 109 CPT-SPT pairs for sand,sandy silt,and silty sand soils.The ANN model input variables are:CPT tip resistance(qc),effective vertical stress(σ’v),and CPT sleeve friction(fs).A different set of SPT-CPT data was used to check the reliability of the developed ANN model.It was shown that ANN model either under-predicted the N60-value by 7-16%or over-predicted it by 7-20%.It is concluded that back-propagation neural networks is a good tool to predict N60-value from CPT data with acceptable accuracy. Standard Penetration Test(SPT) and Cone Penetration Test(CPT) are the most frequently used field tests to estimate soil parameters for geotechnical analysis and design.Numerous soil parameters are related to the SPT N-value.In contrast,CPT is becoming more popular for site investigation and geotechnical design.Correlation of CPT data with SPT N-value is very beneficial since most of the field parameters are related to SPT N-values.A back-propagation artificial neural network(ANN) model was developed to predict the N6o-value from CPT data.Data used in this study consisted of 109 CPT-SPT pairs for sand,sandy silt,and silty sand soils.The ANN model input variables are:CPT tip resistance(qc),effective vertical stress(σ’v),and CPT sleeve friction(fs).A different set of SPT-CPT data was used to check the reliability of the developed ANN model.It was shown that ANN model either under-predicted the N60-value by 7-16%or over-predicted it by 7-20%.It is concluded that back-propagation neural networks is a good tool to predict N60-value from CPT data with acceptable accuracy.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第1期199-204,共6页 地学前缘(英文版)
关键词 SPT CPT Correlation Artificial neural networ Sand Silt SPT CPT Correlation Artificial neural networ Sand Silt
  • 相关文献

同被引文献33

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部