摘要
利用极小阶反例,借助内幂零群的结构,分析了有限群G及其2-极大子群与3-极大子群的p阶与4阶循环子群在G中拟中心,与G的极大子群的p阶与4阶循环子群在极大子群中拟中心,分别给出了这些群的刻画.可借助这些结论来判定某些群的p-幂零性.
With minimal order counter example and the structure of inner nilpotent subgroups, the finite groups were characterized in which the subgroups of order p of 2-maximal subgroups and 3-maximal subgroups and cyclic subgroups of order 4 of finite groups G were quasicentral and whose subgroups of order p and cyclic subgroups of order 4 of maximal subgroups were quasicentral in the maximal subgroups. Then, using the conclusion, the p-nilpotency of some finite groups can be solved.
作者
高建玲
曹建基
GAO Jian-ling CAO Jian-ji(School of Mathematics and Computer Sciences, Shanxi Datong University, Datong 037009, Chin)
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2017年第1期24-26,共3页
Journal of North University of China(Natural Science Edition)
基金
山西大同大学青年基金资助项目(2009Q14)
山西大同大学博士科研启动经费(2014-B-08)
关键词
拟中心子群
p阶子群
P-幂零群
内幂零群
quasicentral subgroups
subgroups of order p
p-nilpotent groups
inner nilpotent subgroups