期刊文献+

云平台虚拟更衣室系统设计与实现 被引量:2

Design and implementation of virtual dressing room system based on cloud platform
下载PDF
导出
摘要 随着电商交易平台的飞速发展,服装行业的网上交易开始变得普及,但是网络服装行业的发展难以突破在销量上超过实体店的瓶颈,最主要的限制是网购的未知性和用户体验;没有用户的虚拟试穿体验,用户甚至不知道衣服的合身尺寸和穿上衣服的实际效果,而云端虚拟更衣室就是为了解决这一实际问题。该系统分为三个部分:C/S虚拟更衣室客户端、基于协同过滤的推荐算法后台框架、IIS服务器。该系统采用的辅助硬件为Kinect,图像处理算法采用Emgu来优化,前台客户端推荐列表采用基于协同过滤和基于内容过滤的联合推荐算法,匹配用户身高的衣服尺寸则采用Kinect SDK自带的骨骼追踪算法实现。项目设计的云平台虚拟更衣室是基于多算法融合的网络结构的框架,通过大量测试和实验表明,该项目有效地解决了体感应用与云平台结合的问题,并且经过完善后,用户体验更加友好。 With the rapid development of e-commerce trading platform,the apparel industry's online trading has become popular,but the development of online apparel industry is difficult to break through the bottle neck of the store,the most important is the unknown and user experience online shopping experience,users do not even know the actual effect of clothes and cloud virtual dressing room is to solve this problem. The system is divided into three parts: C/S virtual locker room client,based on collaborative filtering recommendation algorithm background framework,IIS server. The system uses the auxiliary hardware,which is Kinect,the image processing algorithm uses Emgu to optimize,the foreground client recommended list is based on collaborative filtering and content-based filtering recommendation algorithm,matching the user's height of the clothes size is the use of kinect SDK's own skeleton tracking algorithm. The project design of the cloud platform virtual dressing room is based on the framework of multi algorithm fusion of network structure,through a large number of test and experimental surface,the project effectively solves the problem of combining the application of the body and the cloud platform,and after improving,the user experience is more friendly.
出处 《信息技术》 2017年第1期39-43,共5页 Information Technology
基金 广东省大学生科技创新培育专项资金(攀登计划专项资金)(pdjh2015b0925) 北京理工大学珠海学院学生科研发展基金项目(2013XS10)
关键词 KINECT 云平台 图像处理算法 推荐算法 虚拟更衣室 Kinect cloud platform image processing algorithm recommendation algorithm virtual dressing room
  • 相关文献

参考文献5

二级参考文献32

  • 1J Breese, D Hecherman, C Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In: Proc of the 14th Conf on Uncertainty in Artificial Intelligence (UAI98) . San Francisco,CA: Morgan Kaufmann, 1998. 43~52
  • 2B Sarwar, G Karypis, J Konstan, et al. Item-based collaborative filtering recommendation algorithms. In: Proc of the 10th Int'l World Wide Web Conf. New York: ACM Press, 2001. 285~295
  • 3A Dempster, N Laird, D Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39(1): 1~38
  • 4B Thiesson, C Meek, D Chickering, et al. Learning mixture of DAG models. Microsoft Research, Tech Rep: MSR-TR-97-30,1997
  • 5B Sarwar, G Karypis, J Konstan, et al. Analysis of recommendation algorithms for E-commerce. In: Proc of the 2nd ACM Conf on Electronic Commerce. New York: ACM Press,2000. 158~167
  • 6J Wolf, C Aggarwal, K-L Wu, et al. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering. In: Proc of the 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. New York: ACM Press, 1999. 201~212
  • 7C C Aggarwal. On the effects of dimensionality reduction on high dimensional similarity search. In: Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symp on Principles of Database Systems. New York: ACM Press, 2001. 256~266
  • 8B Kitts, D Freed. Cross-sell: A fast promotion-tunable customeritem recommendation method based on conditionally independent probabilities. In: Proc of ACM SIGKDD2000. New York: ACM Press, 2000. 437~446
  • 9Hu M.K.. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory,1962,(8):179~182
  • 10Rothe I.,Susse H.,Voss K..The method of normalization to determine invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4):366

共引文献230

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部