期刊文献+

宽频压电振动能量采集器的分布参数模型与实验 被引量:7

Distributed Parameter Model and Experiments of a Broadband Piezoelectric Vibration Energy Harvester
下载PDF
导出
摘要 为解决无线传感网络节点自供电问题,提出了一种带有弹性支撑与放大的宽频压电振动能量采集器。利用Hamilton原理和Raleigh-Ritz方法,并考虑悬臂梁末端质量块的影响,建立了压电能量采集器的分布参数机电耦合模型;数值分析了能量采集器质量比、刚度比和阻尼比等参数对系统振动特性、输出特性的影响;研制了实验原理样机,搭建了实验测试平台,验证了数学模型的正确性。研究结果表明,分布参数模型比集总参数模型具有更高的预测精度。 To solve self-power problem of wireless sensor network nodes, a broadband piezoelec- tric vibration energy harvester with an elastic supporter and amplifier was presented herein. Distribu- ted parameter coupling electromechanical model of piezoelectric vibration energy harvester was estab- lished with Hamilton principle and Raleigh-Ritz method by considering the influences of cantilever tip mass. Effects of structural parameters (such as mass ratio, stiffness ratio, and damping ratio) on the vibration performance, the electric output performance of piezoelectric energy harvester were numeri- cally analyzed. Prototype of piezoelectric energy harvester and experimental setup were developed. Some experiments were carried out to testify the validity of the proposed mathematical model. Re- search results show that the distributed parameter model may obtain higher precision than that of lumped parameter model.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2017年第2期127-134,共8页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51277165) 浙江省自然科学基金资助项目(LF15Y0001)
关键词 压电能量采集 两自由度 分布参数模型 弹性放大器 宽频带 piezoelectric energy harvester two degrees of freedom distributed parameter model elastic amplifier wide frequency band
  • 相关文献

参考文献4

二级参考文献62

  • 1Aldraihem, O., Baz, A., 2011. Energy harvester with dynamic magnifier. Journal of Intelligent Material Systems and Structures, 22(6):521-530. [6oi:a 0.1 a 7711045389x114 02706]A.
  • 2rafa, M., Akl, W., Aladwani, A., Aldraihem, O., Baz, A., 2011. Experimental Implementation of a Cantilevered Piezoelectric Energy Harvester with a Dynamic Magnifier. Proceedings of SPIE, the International Society for Optical Engineering, 7977:79770Q. [doi:10.1117/12. 880689].
  • 3Auld, B.A., 1973. Acoustic Fields and Waves in Solids. Wiley, New York, p.357-382.
  • 4Beeby, S.E, Tudor, M.J., White, N.M., 2006. Energy harvest- ing vibration sources for microsystems applications. Measurement Science and Technology, 17(12):RI75- R195. [doi:10.108810957-0233/171121R01].
  • 5Challa, V.R., Prasad, M.G., Shi, Y., Fisher, F.T., 2008. A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures, 17(1):015035. [doi:10.1088/0964-17261171 01/015035].
  • 6Cornwell, P.J., Goethal, J., Kowko, J., Damianakis, M., 2005. Enhancing power harvesting using a tuned auxiliary structure. Journal of Intelligent Material Systems and Structures, 16(10):825-834. [doi:]0.11771/045389X050 55279].
  • 7Died, J.M., Garcia, E., 2010. Beam shape optimization for power harvesting. Journal of Intelligent Material ,Systems and Structures, 21(6):633-646. [doi:]0.]177/]045389X / 0365094].
  • 8du Toit, N., 2005, Modeling and Design of a MEMS Piezoelectric Vibration Energy Harvester. MS Thesis, Massachusetts Institute of Technology, USA.
  • 9du Toit, N., Wardle, B.L., 2007. Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA .hmrnal, 45(5):1126-1137. [doi:10. 2514/1.25047].
  • 10du Toit, N., Wardle, B.L., Kim, S.G., 2005. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integrated I*2,rroelectrics, 71 ( 1 ): 121 - 160. [dol: 10.108011 0584580590964574].

共引文献20

同被引文献31

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部