期刊文献+

Research on strong reverberation suppression for high resolution active sonar 被引量:1

Research on strong reverberation suppression for high resolution active sonar
原文传递
导出
摘要 Resolution enhancement of active sonar can suppress the reverberation.While it also makes the envelope data distribution diverge from Rayleigh distribution to K-distribution.The stronger scattering speckles,the heavier of the K-distribution tails.The envelope amplitudes of these strong scattering speckles are usually very big.As the interfering target,the strong reverberation decreases the performances of the background power level estimation and the target detection.The fuzzy statistical normalization processing(FSNP) is introduced to suppress the strong reverberation firstly in this paper.Then how the strong reverberation and the FSNP affect the distribution of K-distributed sonar data is studied.The influence on the constant false alarm rate(CFAR) detection performance caused by the strong reverberation and the FSNP is also simulated and analyzed.Performance comparisons between the CFAR detector based on FSNP and the conventional CFAR detectors are carried out.The simulation results show that the strong reverberation can make the shape parameter of the interfering K-distributed data become smaller than that of the original K-distributed data.While the FSNP can suppress the strong reverberation,increase the shape parameter value,and improve the performance of the shape parameter estimator and the CFAR detector. Resolution enhancement of active sonar can suppress the reverberation.While it also makes the envelope data distribution diverge from Rayleigh distribution to K-distribution.The stronger scattering speckles,the heavier of the K-distribution tails.The envelope amplitudes of these strong scattering speckles are usually very big.As the interfering target,the strong reverberation decreases the performances of the background power level estimation and the target detection.The fuzzy statistical normalization processing(FSNP) is introduced to suppress the strong reverberation firstly in this paper.Then how the strong reverberation and the FSNP affect the distribution of K-distributed sonar data is studied.The influence on the constant false alarm rate(CFAR) detection performance caused by the strong reverberation and the FSNP is also simulated and analyzed.Performance comparisons between the CFAR detector based on FSNP and the conventional CFAR detectors are carried out.The simulation results show that the strong reverberation can make the shape parameter of the interfering K-distributed data become smaller than that of the original K-distributed data.While the FSNP can suppress the strong reverberation,increase the shape parameter value,and improve the performance of the shape parameter estimator and the CFAR detector.
机构地区 Institute of Acoustics
出处 《Chinese Journal of Acoustics》 CSCD 2016年第4期371-383,共13页 声学学报(英文版)
基金 supported by the National Natural Science Foundation of China(61431020,61471352,61671443)
  • 相关文献

参考文献4

二级参考文献48

  • 1陈鹏,侯朝焕,马晓川,梁亦慧.LFM信号基于自适应预白化处理的GLRT检测器[J].系统工程与电子技术,2006,28(8):1138-1140. 被引量:5
  • 2奥里雪夫斯基.海洋混响的统计特性.北京:科学出版社,1977.101-197.
  • 3Robert J Urick.水声原理.哈尔滨:哈尔滨船舶工程学院出版,1990:190-230.
  • 4Jakeman E, Pusey P N. A model for non-Rayleigh sea echo. IEEE Trans. Antennas ProPage, 1976: 24(6): 806-814.
  • 5Ward K D. Compound representation of high resolution sea clutter. Electronics Letters, 1981: 17(16): 561-563.
  • 6Abraham D A. Choosing a non-Rayleigh reverberation model. In: Proc. OCEANS'99 Conf., 1999: 1:284-288.
  • 7Abraham D A. Statistical normalization of non-Rayleigh reverberation. OCEANS'97 Conf. Halifax, NS, Canada, 1997:500 505.
  • 8Abraham D A, Lyons A P. Reliable methods for estimat- ing the distribution shape parameter. IEEE Journal of Oceanic Engineering, 2010: 35(2): 288-302.
  • 9Abraham D A. Signal excess in K-distributed reverbera- tion. IEEE Journal of Oceanic Engineering, 2003: 28(3): 526 536.
  • 10Abraham 19 A, Lyons A I-. Novel physical interpretations of K-distributed reverberation. IEEE Journal of Oceanic Engineering, 2002: 27(4): 800-813.

共引文献35

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部