摘要
A two-dimensional vector hydrophone was developed utilizing the PMN-PT relaxor ferroelectric single crystal,which is composed of a dual-axis piezoelectric composite flexural beam accelerometer and PZT-5 piezoelectric ceramic rings.Based on the principle of elastic mechanics and underwater particle velocity measurement,the receiving voltage sensitivity of the flexural beam vector hydrophone is derived.The influence of stress distribution in the flexural beam on the performance of hydrophones is analyzed,and the match between PMNPT single crystal cells and the structure of flexural beam is studied.The tested results indicate that the PMN-PT hydrophone presents an 11 dB increase in sensitivity and a 3 dB decrease in self-noise than the PZT-5 one.
A two-dimensional vector hydrophone was developed utilizing the PMN-PT relaxor ferroelectric single crystal,which is composed of a dual-axis piezoelectric composite flexural beam accelerometer and PZT-5 piezoelectric ceramic rings.Based on the principle of elastic mechanics and underwater particle velocity measurement,the receiving voltage sensitivity of the flexural beam vector hydrophone is derived.The influence of stress distribution in the flexural beam on the performance of hydrophones is analyzed,and the match between PMNPT single crystal cells and the structure of flexural beam is studied.The tested results indicate that the PMN-PT hydrophone presents an 11 dB increase in sensitivity and a 3 dB decrease in self-noise than the PZT-5 one.
基金
supported by the Natural Science Foundation of China(11274339)