期刊文献+

基于扩展的带路径约束随机游走模型的扩展词排序方法

Sorting Expansion Terms by Extended Path-constrained Random Walks Model
下载PDF
导出
摘要 在同时从点击文档与历史查询条件等多个扩展词来源选取扩展词的过程中,扩展词来源对应的约束值可以影响该来源的扩展词被优先选择的程度.由于现有模型为不同查询条件的相同扩展词来源设置相同的约束值,因此导致所有查询条件优先选择的扩展词来源相同.然而观察日志可以发现,不同查询条件适合从不同扩展词来源选取扩展词.由此,提出一种扩展的带路径约束的随机游走模型.该模型首先对每个查询条件与不同来源扩展词的相关性进行统一尺度的估计,并根据估计结果对不同扩展词来源对应的约束值进行估计,从而使不同的查询条件能够优先选择不同来源的扩展词.一系列实验表明,本文方法构造的扩展查询条件具有更好的性能,更符合用户的查询目标. When selecting expansion terms from both clicked documents and queries in log, path consistent has the influence to the prior choice of expansion terms in each resource. Because current model assigns the same expansion term resource of different queries by the same path consistent value, all queries may prior select the same expansion term resource. However, it can be observed from log that different queries are suitable for selecting expansion terms from different expansion term resources. Therefore, this paper proposed an expanded Path-Constrained Random Walks model. The model firstly evaluates relevance between the query and expansion terms from different resources by a unified judgment,and assigns different expansion term resources of one query with different path consistent values. That allows different queries can prior select different resources of expansion term by their own condition. Experiment results show that performance of expansion query generated by this paper is better and more related to current user intent.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第2期254-258,共5页 Journal of Chinese Computer Systems
基金 国家科技支撑计划项目(2014BAI17B00)资助 宁夏回族自治区自然科学基金项目(NZ13265)资助 中央高校东北大学基本科研专项基金项目(N120804001 N120204003)资助
关键词 查询扩展 日志挖掘 扩展词排序 随机游走 query expansion log mining expansion term sorting random walk
  • 相关文献

参考文献3

二级参考文献65

  • 1Cui H, WenJR, NieJY, Ma WY. Query expansion by mining user 10gs[J] . IEEE Transaction on Knowledge and Data Engi?neering,2003, 15( 4) : 829 - 839.
  • 2Fonseca BM. Concept-based interactive query expansion[AJ. Proceeding of the CIKM[CJ . New York: ACM Press, 2005 . 696 -703.
  • 3Baeza-Yates, Hurtado C, Mendoza M. Query recommendation using query logs in search engines[AJ . Proceeding of the EDBT Workshop[CJ. Berlin, Heidelberg: Springer-Verlag, 2004 . 588 - 596.
  • 4Cao HH,Jiang DX,PeiJ,He Q,Liao Z,Chen EH,Li H.Con?text-aware query suggestion by mining click-through and ses?sion data[AJ . Proceeding of the KDD[CJ . New York: ACM Press, 2008 . 875 - 883 .
  • 5Huang C, et al. Relevant term suggestion in interactive web search based on contextual information in query session logs[J] .Jouma1 of the American Society for Information Science and Technology, 2003 . 54( 7) : 638 - 649.
  • 6Zhao SQ, Wang HF, Liu T. Paraphrasing with search engine query 10gs[AJ. Proceeding of the COLING[CJ. Morristown: ACL,2010.1317 - 1325.
  • 7Pasca M. Weakly-supervised discovery of named entities using web search queries[AJ . Proceeding of the CIKM[CJ . New York:ACM Press, 2007 .683 - 690.
  • 8GuoJF, Xu G, Cheng XQ, Li H. 2009. Named entity recogni?tion in query[AJ . Proceeding of the SIGIR[CJ . New York: ACM Press, 2009.267 - 274.
  • 9DuJ ,Zhang ZM, YanJ,Cui Y ,Cheng Z. Using search session context for named entity recognition in query[AJ . Proceeding of the SIGIR[c . New York:ACM Press, 2010. 765 -766.
  • 10Jansen BJ,Spink A.How are we searching the World Wide Web? A comparison of nine search engine transaction logs[J] . Information Processing and Management, 2006, 42 ( 1 ) : 248 - 263.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部