摘要
设p∈(0,1),本文研究p-级数∑∞n=1n^(-p)的发散速度估计.通过构造适当的区间套,得到了limn→∞A_(n,p):=C_p∈(p,2^(1-p)-1+p),0<C_p-A_(n,p)<(1-p)n^(-p),这里,A_(n,p)=n^(1-p)-(1-p)∑k=nk=1k^(-p).进一步,应用数值积分的梯形公式,得到了lim_(n→∞)n^p C(_p-A_(n,p))=(1-p)/2以及C_p-A_(n,p)的二次估计.所得结果改进了文(马书燮,关于发散p-级数的一个不等式[J].大学数学,2013,29(2):147-150.)中的结果.
In this paper we estimate the rate of divergence of the p-series ∑∞n=1n^-p P∈ (0,1). We obtain limn→∞An,p:=C_p∈(p,2^1-p-1+p),0〈Cp-An,p〈(1-p)n^-p, by constructing an appropriate nested intervals. Here An,p=n^1-p(1-p)∑k=1^l=st k-p.. Moreover, the equality limn→∞n^p(G-An,p)=(1-p)/2 and a second order estimate of Cp-An,p are obtained by using the trapezoid formula of the numerical inte gration. Our results improve those in[-2].
作者
王海玲
张志军
WANG Hailing ZHANG Zhijun(School of Mathematics and Informational Science, Yantai University, Yantai 264005, PR)
出处
《高等数学研究》
2017年第1期28-29,共2页
Studies in College Mathematics
基金
国家自然科学基金(11571295)