摘要
The strategy of sequentially spin-coating a perovskite film from the perovskite precursor and an electron transporting layer of [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) is developed to simplify the fabrication procedure of perovskite solar cells. X-ray diffraction and scanning electron microscopy indicate that PCTIBM film on perovskite layer can retard the evaporation of dimethyl sulfoxide (DMSO) efficiently, thus prolonging the transformation of intermediate phase to perovskite crystals, leading to a high quality perovskite thin film. The solar cells with the structure of indium tin oxides (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/CH3NH3PbI3/PC71BM/bathocuproine (BCP)/Ag made from this simplified method exhibit a higher efficiency (12.68%) than those from the conventional one-step method (9.49%).
The strategy of sequentially spin-coating a perovskite film from the perovskite precursor and an electron transporting layer of [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) is developed to simplify the fabrication procedure of perovskite solar cells. X-ray diffraction and scanning electron microscopy indicate that PCTIBM film on perovskite layer can retard the evaporation of dimethyl sulfoxide (DMSO) efficiently, thus prolonging the transformation of intermediate phase to perovskite crystals, leading to a high quality perovskite thin film. The solar cells with the structure of indium tin oxides (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/CH3NH3PbI3/PC71BM/bathocuproine (BCP)/Ag made from this simplified method exhibit a higher efficiency (12.68%) than those from the conventional one-step method (9.49%).
基金
financially supported by the Major State Basic Research Development Program(No.2014CB643503)
the National Natural Science Foundation of China(No.51620105006)
the Program for Innovative Research Team in University of Ministry of Education of China(No.IRT13R54)