期刊文献+

基于遗传算法优化PNN的短期负荷预测 被引量:4

Short-term Load Forecasting Based on PNN Optimized by Genetic Algorithm
下载PDF
导出
摘要 为提高短期负荷预测精度,提出了一种基于遗传算法优化概率神经网络(PNN)的短期预测模型。首先对负荷数据异常值进行辨识与修正,建立PNN短期预测模型,在此基础上引入遗传算法(GA),优化概率神经网络的平滑因子,改善了PNN模型的性能,优化后的PNN短期预测模型预测精度得到明显的提高。实例预测结果证实了该方法的有效性。 In order to improve the prediction accuracy of short-term load forecasting, the method based on probability neural network (PNN) optimized by genetic algorithm (GA) is proposed in this paper. After data identification and correction of load, the PNN forecasting model is established, followed by the introduction of genetic algorithm optimize the smoothing parameters of PNN to improve the performance of the PNN and the optimized PNN short-term load forecasting model accuracy has been improved obviously. The effectiveness of the proposed method is verified by examples.
作者 彭钟华 PENG Zhong-hua(Shenzhen Pumped Storage Power Station Company, Shenzhen 518115, Guangdong, China)
出处 《电气开关》 2017年第1期49-51,56,共4页 Electric Switchgear
关键词 概率神经网络 平滑因子 遗传算法 短期负荷预测 probability neural network smoothing parameter genetic algorithm short-term load forecasting
  • 相关文献

参考文献8

二级参考文献73

共引文献137

同被引文献34

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部