期刊文献+

微分方程特征值理论在Ekman流解中的应用

Application of differential equation eigenvalue theory in Ekman's currents
下载PDF
导出
摘要 为了更为细致地讨论非恒常量的垂向湍黏性系数对Ekman流解的影响,基于微分方程的特征值理论,简要分析了在不同垂向湍黏系数分布条件下,Ekman流解所具有的结构特征,并结合数值方式模拟了Ekman流的垂向结构。在开边界条件下,不同深度的数值模拟结果较为一致,数值模拟验证了Ekman流的垂向结构与湍黏系数垂向分布的特征有密切关系。据此得出,不同的垂向湍黏系数结构将改变Ekman流的影响深度及表层流与风应力的夹角,Ekman流解含有垂向湍黏系数分布的特征。理论推导和数值试验均表明,在不同的黏性系数垂向分布状态下,Ekman流具有不同的垂向结构,且影响深度也各不相同。 To get a more detailed Ekman's currents characteristics under the influence of the vertical turbulent viscosity coefficient as a non-constant,Ekman's currents were analyzed with application of differential equation eigenvalue theory.Combined with the suitable results of numerical methods based on open boundary conditions,it is found that the vertical structure of Ekman flow is closely related to the vertical turbulent viscosity coefficient distributions.Ekman depth and the angle of the surface current to the wind are influenced by the vertical turbulent viscosity coefficient distributions,and the Ekman currents have the characteristics of the distribution of the vertical turbulent viscosity coefficient.Both theoretical and numerical results show that in the different vertical turbulent viscosity coefficient distributions,the Ekman currents have different vertical characteristics,and that the Ekman depths are also different.
作者 陈璇 郑崇伟 吴雪剑 CHEN Xuan ZHENG Chongwei WU Xuejian(Unit No.75822 of PLA, Guangzhou 510510, China Dalian Naval Academy, Dalian 116018, China College of Meteorology and Oceanography, PLA Univ. of Sci. ~〉 Teeh., Nanjing 211101, China)
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2017年第1期68-73,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 中国科协“高端科技创新智库青年项目”(DXB-ZKQN-2016-019) 山东省自然科学基金资助项目(ZR2016DL09)
关键词 微分方程 特征值理论 数值模拟 Ekman流解 differential equation eigenvalue theory numerical simulation Ekman's currents' solution
  • 相关文献

参考文献6

二级参考文献101

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部