期刊文献+

基于字典学习的煤岩图像特征提取与识别方法 被引量:48

Method of coal-rock image feature extraction and recognition based on dictionary learning
下载PDF
导出
摘要 现今的煤岩图像识别方法取得了一些阶段性的成果,但还无法满足实际需求。为了挖掘新的煤岩图像识别方法,研究了基于字典学习的煤岩图像特征提取与识别技术,提出用字典学习算法提取煤岩图像特征。字典学习算法采用随机选择的方法对字典进行初始化和更新。结合分类算法对煤岩图像进行分类识别,结果表明:通过字典学习,能简单有效表达煤岩图像的特征信息,获得了较高的识别率,且该特征提取方式具有较好的发展前景。研究结果可为煤岩界面的自动识别提供新的思路和方法。 Currently the methods of coal-rock recognition have achieved some stage results, but this still cannot meet the production demands. In order to develop a new method of coal-rock recognition,the technique of coal-rock image feature extraction and recognition based on dictionary learning was researched. The dictionary learning algorithm is proposed to apply for extracting the feature of coal-rock image. The method of random selection is adopted to initialize and update the dictionary. The classification algorithm is adopted to identify the coal-rock image. The results show that the feature extraction method by dictionary learning can simply and effectively express the characteristic information of coal-rock image, and achieve a high recognition rate. Research results could provide a new method for the coal-rock in- terface automatic recognition.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2016年第12期3190-3196,共7页 Journal of China Coal Society
基金 2016年国家重点研发计划资助项目(2016YFC0801800) 国家自然科学基金资助重点资助项目(51134024)
关键词 字典学习 煤岩图像 特征提取 煤岩识别 dictionary learning coal-rock image feature extraction coal-rock recognition
  • 相关文献

参考文献6

二级参考文献186

  • 1张海,王尧,常象宇,徐宗本.L_(1/2)正则化[J].中国科学:信息科学,2010,40(3):412-422. 被引量:15
  • 2任芳,熊晓燕,杨兆建.煤岩界面识别的关键状态参数[J].煤矿机电,2006,27(5):37-39. 被引量:7
  • 3Park S,Park M,Kang M.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 4Hou H S,Andrews H C.Cubic spline for image interpolation and digital filtering[J].IEEE Transaction on Signal Pressing,1978,26(6):508-517.
  • 5Stark H,Oskoui P.High resolution image recovery from imageplane arrays,using convex projections[J].Opt Soc Am A,1989,6(11):1715-1726.
  • 6Irani M,Peleg S.Improving resolution by image registration[J].CVGIP:Graphical Models and Image Processing,1991,53(3):231-239.
  • 7Nhat N,Milanfar P,Golub G A computationally efficient super resolution image reconstruction algorithm[J].IEEE Transactions on Image Processing,2001,10(4):573-583.
  • 8Hardie R C,Barnard,Armstrong K.J,et al.Joint MAP registration and high-resolution image estimation using a sequence of under-sampled images[J].IEEE Trans Image Processing,1997,6(12):1621-1633.
  • 9Freeman W T,Pasztor E C,Carmichael O T.Learning low-level vision[J].International Journal of Computer Vision,2000,40(1):25-47.
  • 10Freeman W T,Pasztor E C,Carmichael O T.Example-based super-resolution[J].IEEE Computer Graphics and Application,2002,22(2):56-65.

共引文献219

同被引文献478

引证文献48

二级引证文献344

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部