期刊文献+

DPSOGA:一种新型片上网络映射算法 被引量:2

DPSOGA:a Novel Heuristic Mapping Algorithm for Network-on-chip
下载PDF
导出
摘要 针对系统约束下的片上网络映射如何建立低功耗和链路负载的多目标优化函数,提出一种基于融合离散粒子群算法(Discrete Particle Swarm Optimization Algorithm,DPSOA)和遗传算法(Genetic Algorithm,GA)的新型映射算法.该算法利用任务节点通信量大小及其连接关系,划分优先级,得到若干较优初始解集;利用离散粒子群算法的快速搜索能力迅速靠近最优解,利用遗传操作中的选择和变异防止算法掉入局部较优解陷阱,以较少的迭代次数完成最优解的寻找.实验结果表明:与遗传算法、粒子群算法和蚁群算法相比,该算法在功耗和链路负载优化上都能达到较好的结果. In order to build a multi-objective function of low power and link load in NoC ( Network-on-Chip ) mapping with the consideration of the systematic limitations,a novel heuristic comb'mation algorithm,based on Discrete Particle Swarm Optimization Algorithm (DPSOA) and Genetic Algorithm(GA) ,was proposed in this paper. This algorithm prioritized the nodes according to their communication weights, and then acquired a better initial mapping solution set through the task node priority and their connection. Finally, it obtains the optimal solution at the advantage of DPSOA on its rapid search process. Moreover, we introduced the choice and mutation of GA to prevent the algorithm stagnation,and finally got the global optimal solution within fewer iterations. Experimental results show that, compared with the GA, DPSOA and ACA (Ant Colony Algorithm ), our proposed algorithm achieved better results on power consumption and link load.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第3期651-656,共6页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划项目(2014AA01A)资助
关键词 片上网络 低功耗 链路负载 离散粒子群算法 遗传算法 Network-on-Chip low-power link load discrete particle swarm optimization algorithm genetic algorithm
  • 相关文献

参考文献2

二级参考文献15

  • 1吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:47
  • 2Hu J, Marculescu R. Energy-aware communication and task scheduling for network-on-chip architectures under real-time constraints[ A ]. Proc DATE' 04[ C]. Paris:IEEE, 2004. 234 - 239.
  • 3Nickray M,Dehyadgari M, Afzali-kusha. Power and delay optimizalion for network on chip [ A ]. ECCTD ' 05[C ]. Cork, Ireland: IEEE, 2005.273 - 276.
  • 4Tang Lei, Shashi Kumar. A two-step genetic algorithm for mapping task graphs to a network on chip architecture[A]. DSD'03 [ C ]. Antalya, Turkey:IEEE., 2003. 180 - 187.
  • 5Zhou W B, Zhang Y, Mao Z G. An application specific NoC mapping for optimized delay [ A]. DTIS 2006 [ C ]. Gammarth, Tunisia: IEEE,2006. 184- 188.
  • 6Marcon C, Calazans N, et al. Exploring NoC mapping strategies:an energy and timing aware technique[ A]. DATE' 2005 [ C]. Munich, Germany: IEEE, 2005.1. 502 - 507.
  • 7Ye T T, Benini L, Micheli G De. Analysis of power consumption on switch fabrics in network reuters[ A]. DAC' 02[C]. New Orleans, LA: ACM Press, 2002. 524 - 529.
  • 8Maniezzo V, Colomi A. The ant system applied to the quadratic assignment problem[ J]. IEEE Tran on Knowledge and Data Engineering, 1999,11(9) :769 - 778.
  • 9Maniezzo V, Colomi A. The ant system applied to the quadratic assignment problem[J]. IEEE Transactions on Knowledge and Data Engineering, 1999, 11(5) :769 - 778.
  • 10Sttltzle T, Dorigo M. ACO Algorithms for the Quadratic Assignment Problem, New Ideas in Optimization[ M ]. McGraw- Hill, 1999.

共引文献48

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部