摘要
观察并研究了IF钢高压扭转压缩阶段过程中的硬度及显微组织不均匀分布特征,并利用ANSYS有限元分析软件对实验结果进行模拟仿真验证。结果表明IF钢在高压扭转压缩阶段过程中的应力、应变及硬度分布是不均匀的:心部变形程度较小,硬度比较低;中间区域变形比较均匀,硬度也趋于一致;在边缘区域,形变程度很大,从而硬度比较高;对于限定型高压扭转,由于模具凹槽立壁对试样变形的阻滞作用,变形量较小从而形成形变"死区"。模拟结果与硬度及显微组织分布的实验结果极为吻合,由此说明,正是由于压缩阶段试样各部位不均匀变形导致了显微组织、硬度的不均匀分布。
Inhomogeneous distributions of hardness and microstructure of IF steel disks during compression stage of high pressure torsion (HPT) were observed and studied, and the experimental results were verified using simulation approach by ANSYS software. The results indicate that the stress, strain and hardness distributions of the IF steel are inhomogeneous in the compression stage of HPT, exhibiting lower hardness and smaller degree of deformation in center, homogeneous deformation with almost the same hardness in radial medium, higher hardness and bigger degree of deformation in edge. Otherwise, there is a small deformation zone named "dead meal zone" due to the vertical wall constraint. The experimental results of the hardness and micstructure are strongly supported by the simulation results, it is indicated that the distributions of hardness and mierostructure are inhomogeneous due to the heterogeneous deformation of IF steel during the compression stage of high pressure torsion.
作者
宋月鹏
陈苗苗
徐保岩
高东升
郭晶
许令峰
Kim Hyoung-Seop
SONG Yue-peng CHEN Miao-miao XU Bao-yan GAO Dong-sheng GUO Jing XU Ling-feng KIM Hyoung-Seop(Shandong Agricultural University, Mechanical and Electronic Engineering College, Tai' an 271018, China Shandong Agricultural University, Shandong Provincial Key Laboratory of Horticultural Machineries and Equipments, Tai' an 271018, China Pohang University of Science and Technology, Department of Materials Science and Engineering, Pohang 790784, Korea)
出处
《材料热处理学报》
EI
CAS
CSCD
北大核心
2017年第2期105-110,共6页
Transactions of Materials and Heat Treatment
基金
山东省现代农业产业技术体系果品产业创新团队资金(SDAIT-06-12)
山东省科技发展计划项目(2014GGX102012)
国际热核聚变实验堆(ITER)计划专项(2013GB110005)
关键词
高压扭转
压缩阶段
IF钢
不均匀变形
有限元分析
high pressure torsion(HPT)
compression stage
IF steel
heterogeneous deformation
finite element analysis