期刊文献+

基于权限统计的Android恶意应用检测算法 被引量:2

AN ANDRIOD MALWARE DETECTION ALGORITHM BASED ON PERMISSIONS COUNT
下载PDF
导出
摘要 作为世界上最流行的移动操作系统,Android正面临着快速增长的恶意软件的威胁。如何快速高效地检测出Android恶意软件对保证用户手机安全具有十分重大的意义。从Android软件的权限出发,统计了4000多个恶意应用和2000多个正常应用的权限分布情况,依据特征权限在恶意应用和正常应用中的分布规律,设计了一种轻量级的快速检测方法 LWD(Light Weight Detection)。LWD根据特征权限在恶意应用中的使用频率和在正常应用中的使用频率的不同来定量分析特征权限恶意程度值,并以此计算每个样本的恶意程度值是否超过规定阈值来判断该样本是否属于恶意应用。实验结果表明,与市场上主流的杀毒软件相比,LWD方法具有较好的检测率。而且LWD是基于单一的权限特征对恶意软件进行检测,因此具有较高的时间效率。作为一种轻量级检测方法,LWD可以为更进一步深入检测恶意应用提供参考依据。 As the most popular mobile operating system in the world,Android platform has been under the threat of the quickly growth of malware. It makes a significant sense to find solutions to detect the malware quickly. After analyzing the character permissions usage in more than 4000 malware and more than 2000 benign applications,a solution named LWD( Light Wight Detection) to detect malware is proposed. LWD defines the malicious value of character permissions on basis of the permissions usage frequency in malware and benign applications. Then,the application will be judged whether it is a malware by calculating the malicious value of the application. The results of experiment show that LWD has a better detection compared with other popular anti-virus software. As a single permission characterization,LWD has good time efficiency and it is able to provide foundation of further malware detection.
出处 《计算机应用与软件》 2017年第1期306-310,320,共6页 Computer Applications and Software
关键词 智能手机 安卓系统 特征权限 LWD 频率 Smart phone Android system Character permissions LWD Frequency
  • 相关文献

参考文献5

二级参考文献42

  • 1邵艳沽.Android操作系统移植及应用研究[D].湖南:湖南大学,2011.
  • 2Enck W, Ongtang M, McDaniel P. On lightweight mobile phone application certification [C] //Proceedings of the 16th ACM conference on Computer and Communications Security. USA: ACMPress, 2009: 235-245.
  • 3Mohammad Nauman, Sohail Khan, Xinwen Zhang. Apex: Extending android permission model and enforcement with user- defined runtime constraints [C] //Proceedings of the 5th ACM Symposium on Information, Computer and Communications Se- curity. USA: ACM, 2010: 328-332.
  • 4Francesco Di Cerbo, Andrea Girardello. Detection of malicious applications on android OS [C] //Computational Forensics, GRE: Springer, 2011: 138-149.
  • 5Vidas T, Christin N, Cranor L. Curbing android permission creep [C] //Oakland, CA, USA: Proceedings of the Web 2.0 Security and Privacy Workshop, 2011.
  • 6Asaf Shabtai, Yuval Elovici. Applying behavioral detection on android-based devices [J]. Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 2010, 48 (5): 235-249.
  • 7Enck W,OngTang M,McDaniel P.Understanding Android security[J].IEEE Security and Privacy,2009,7 (1):50-57.
  • 8Felt A P,Greenwood K,Wagner D.The effectiveness of application permission[C]//Proceedings of the 2nd USENIX Conference on Web Application Development.USA:USENIX Association,2011:7-7.
  • 9Enck W,Gilbert P,Chun B,et al.An information-flow tracking system for realtime privacy monitoring on smartphones[C]//Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation.USA:USENIX Association,2010:255-270.
  • 10Shahzad F,Bhatti S,Shahzad M,et al.Inexecution malware detection using task structures of Linux processes[C]//USA:Proceedings of the IEEE International Conference on Communication,2011:1-6.

共引文献101

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部