期刊文献+

基于马尔科夫随机场的多特征人脸跟踪算法 被引量:6

Face Tracking with Multi-Feature Based on Markov Random Field
原文传递
导出
摘要 为实现稳健和精确的人脸跟踪,充分挖掘了人脸中的颜色信息、梯度方向信息和空间结构信息。在人脸中提取眼睛、鼻子和嘴巴等显著特征子块作为跟踪子块,在每个子块中选择最显著的特征作为跟踪的依据,并用马尔科夫随机场建立各个子块之间的空间约束关系,实现稳健的人脸跟踪。和若干典型跟踪算法的比较,实验结果表明,所提出的跟踪算法具有较好的稳健性和精确性。 To achieve a robust and precise face tacking, the color information, gradient direction information and spatial structure information of face are fully exploited. The eyes, nose and mouth patches are employed as tracking regions from human face. The dominant features in these patches are extracted as the basis for tracking. Markov random fields are used to build the spatial constraints between these patches, and a robust tracking algorithm is realized. Experimental results show that, compared with several typical tracking algorithms, the proposed algorithm has well performance in robustness and precision.
作者 蔡荣太 朱鹏
出处 《激光与光电子学进展》 CSCD 北大核心 2017年第2期126-130,共5页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61179011) 福建省自然科学基金(2014J01224)
关键词 图像处理 人脸跟踪 马尔科夫随机场 多特征跟踪 分块跟踪 粒子滤波 image processing face tracking Markov random field multi-feature tracking part-based tracking particle filter
  • 相关文献

参考文献3

二级参考文献36

  • 1万磊,黄蜀玲,张铁栋,等.基于可见光图像的智能水下机器人管道跟踪系统.中国激光,2014,41(s1):s109006.
  • 2Ross D A, Lim J, Lin R S, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
  • 3Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 4Zhang K H, Zhang L, Yang M H. Real-time object tracking via online discriminative feature selection[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4664-4677.
  • 5Zhang K H, Zhang L, Yang M H, Fast compressive tracking[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
  • 6Black M J, Jepson A D. Eigentracking: Robust Matching and Tracking of Articulated Objects using a View-Based Representation[M]. Berlin: Springer, 1996.
  • 7Qing C M, Zhao S M, Xu X M. The incremental PCA tracking with negative samples[C]. 2014 IEEE International Conference on Consumer Electronics, 2014: 1-4.
  • 8Fu K S, Mui J K. A survey on image segmentation[J]. Pattern Recognition, 1981, 13(1): 3-16.
  • 9Li S Z. Markov Random Field Modeling in Computer Vision[M]. Berlin: Springer, 2012.
  • 10Glauber R J. Time-dependent statistics of the Ising model[J]. J Math Phys, 1963, 4(2): 294-307.

共引文献43

同被引文献56

引证文献6

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部