期刊文献+

基于分布式传感的全光纤放大器增益光纤纤芯温度测量 被引量:6

Temperature Measurement for Gain Fiber Core in All-Fiber Amplifier Based on Distributed Sensing
原文传递
导出
摘要 在高功率光纤激光器中,增益光纤的热效应是限制激光功率提高的重要因素之一。传统的温度测量方法只能测量到增益光纤的表面温度,无法得到增益光纤内部不同位置的温度。采用分布式光频域反射(OFDR)技术测量全光纤放大器中增益光纤纤芯的温度。对采用OFDR技术得到的温度测量结果进行了标定,验证了OFDR测量工作状态下放大器内增益光纤温度的准确性。测量了输出功率为6 W的全光纤放大器内增益光纤纤芯的温度分布,测量结果与理论相吻合。这种测温方法为未来高功率光纤激光器的温度监测提供参考。 Thermal effect of the gain fiber is one of the main factors limiting the power improvement of high power fiber amplifiers. Using traditional temperature measurement methods, we can only obtain the surface temperature of fiber while the core temperature cannot be detected. In this paper, the temperature of the gain fiber core in an all- fiber amplifier is measured by optical frequency domain reflectometry (OFDR). Firstly, the temperature measurement results by OFDR are calibrated and the measuring accuracy of the gain fiber temperature is verified when the amplifier is in operation. Then, the temperature distribution of the gain fiber core in the all-fiber amplifier is measured when the output power is 6 W and the results agree with the current theoretical results. The temperature measurement method proposed can provide a reference for the temperature monitoring in high power fiber lasers in the future.
出处 《中国激光》 EI CAS CSCD 北大核心 2017年第2期157-162,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61505260 61605245) 科技部重点研发计划(2016YFB0402200)
关键词 激光光学 光纤激光器 光频域反射法 温度测量 非线性效应 laser optics fiber lasers optical frequency domain reflectometry temperature measurement nonlinear effect
  • 相关文献

参考文献7

二级参考文献97

  • 1Gray S, Liu A, Walton D T, et al. 502 watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier [J]. Opt Express, 2007,15(25) : 17044-17050.
  • 2Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single frequency ytterbium-doped fiber master-oscillator power amplifier sources up to 500 W[J].IEEE J Sel Top Quantum Electron, 2007,13(3) : 546- 551.
  • 3Christian W, Oliver S, Igor T, et al. 1 kW narrow linewidth fiber amplifier for spectral beam combining[C]//Advanced Solid-State Photon ies. 2008.
  • 4Goodno G D, McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J].Opt Lett, 2010, 35(10) : 1542 1544.
  • 5Khitrov V, Farley K, Leveille R, et al. kW level narrow linewidth Yb fiber amplifiers for beam combining[C]//Proc of SPIE. 2010: 76860A.
  • 6Gray S, Liu A, Walton D T, Wang J, Li M, Chen X, Boh A R, Demeritt J A and Zenteno L A 2007 Opt. Express 15 17044.
  • 7Li J, Duan K, Wang Y, Zhao W, Zhu J and Guo Y 2008 IEEE Photon. Tech. Lett. 20 888.
  • 8Wang X L, Zhou P, Ma Y X, Ma H, Xu X J, Liu Z J and Zhao Y 2010 Chin. Phys. B 19 094201.
  • 9Xue Y H, He B, Zhou J, Li Z, Fan Y Y, Qi Y F, Liu C, Yuan Z, Zhang H and Lou Q H 2011 Chin. Phys. Lett. 28 054211.
  • 10Jianfeng L and Jackson S D 2011 Chin. Phys. B 20 034201.

共引文献41

同被引文献42

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部