期刊文献+

时域和频域特征相融合的语音端点检测新方法 被引量:6

A novel speech activity detection algorithm based on the fusion of time domain and frequency domain features
下载PDF
导出
摘要 为了提高语音端点检测的适应性和鲁棒性,提出一种时域和频域特征相融合的语音端点检测新方法.在对语音信号进行预处理的基础上,对每一帧分别提取调和性、清晰度和周期性这3个时域或频域特征,使用主成分分析进行特征融合,并采用双门限法得到语音端点的候选集合.在此基础上通过支持向量机对候选集合中的端点进行判断得到最终结果.仿真实验表明:相对于传统的语音端点检测算法、时域和频域特征相融合的语音端点检测新算法提高了语音端点检测的正确率,有效降低了误测率和漏检率,具有更好的适应性和鲁棒性,对不同噪声背景的信号都有较好的检测能力. In order to improve the adaptability and robustness of speech activity detection,a novel algorithm for speech activity detection(SAD) is proposed based on the integration of time domain and frequency domain features. In the proposed method,three features,i. e. harmonicity,clarity,periodicity are extracted and combined together with principal component analysis. The candidates of the endpoints are detected by double-threshold method. SVM is utilized to determine the final set of endpoints based on the candidates. Experimental results indicate that the proposed SAD method is effective and provides superior and consistent performance across various noise and distortion levels.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2017年第1期73-78,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61300151) 江苏省自然科学基金资助项目(BK20130155) 江苏省高校自然科学研究项目(13KJB520001) 科技部科技型中小企业技术创新基金(14C26213201061)
关键词 特征融合 特征提取 支持向量机 语音端点检测 主成分分析 feature fusion feature extraction support vector machine speech activity detection principal component analysis
  • 相关文献

参考文献7

二级参考文献82

  • 1严剑峰,付宇卓.一种新的基于信息熵的带噪语音端点检测方法[J].计算机仿真,2005,22(11):117-119. 被引量:13
  • 2赵彦平,赵晓晖.用于语音端点检测的鲁棒性特征提取新方法[J].吉林大学学报(工学版),2006,36(1):77-81. 被引量:6
  • 3朴春俊,马静霞,徐鹏.带噪语音端点检测方法研究[J].计算机应用,2006,26(11):2685-2686. 被引量:10
  • 4Morris B T, Trivedi M M. Contextual activity visualization from long-term video observations. IEEE Intelligent Systems, 2010, 25(3): 50-62.
  • 5Kanhere N K, Birchfield S T. Real-time incremental segmentation and tracking of vehicles at low camera angles using stable features. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(1): 148-160.
  • 6O'Malley R, Jones E, Glavin M. Rear-lamp vehicle detection and tracking in low-exposure color video for night conditions. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2): 453-462.
  • 7Maggio E, Cavallaro A. Learning scene context for multiple object tracking. IEEE Transactions on Image Processing, 2009, 18(8): 1873-1884.
  • 8Mandellos N A, Keramitsoglou I, Kiranoudis C T. A background subtraction algorithm for detecting and tracking vehicles. Expert Systems with Applications, 2011, 38(3): 1619-1631.
  • 9Cho S Y, Quek C, Seah S X, Chong C H. HebbR2-Taffic: a novel application of neuro-fuzzy network for visual based traffic monitoring system. Expert Systems with Applications, 2009, 36(3): 6343-6356.
  • 10Hsu W L, Liao H Y M, Jeng B S, Fan K C. Real-time traffic parameter extraction using entropy. IEE Proceedings - Vision, Image and Signal Processing, 2004, 151(3): 194-202.

共引文献80

同被引文献32

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部