摘要
针对现有水产设备机械化和自动化程度较低,增氧机作用范围有限和投饲机无法自适应投饲的问题,研究设计了一种新型的基于实时水质参数的智能养殖装备。该装备硬件上利用传感器对水质参数进行实时监测,采用太阳能与交流电源混合供电。其中,移动式太阳能增氧机使用超声波测距进行避障,可随机行走、增大增氧机的工作范围;太阳能智能投饲机使用称重传感器进行饲料称重,以实现精确定量投饲。该装备软件上支持个人计算机和手机等多个平台客户端,实现实时水质参数查询、远程增氧、远程投饲、远程智能控制等功能。池塘应用试验结果表明,该装备的监测水质数据可信度高,实时通讯丢包率低于0.2%,在保证增氧能力的情况下,增氧机作用范围比传统水车式增氧机提高10%;能够在良好的水质环境中完成精确定量投饲。研究表明,该装备的应用有助于推进水产设备智能化、自动化的发展,实现节能降耗、绿色环保的目标。
In view of the limitations of current aquaculture equipment such as low level of mechanization andautomation,limited working scope of aerators and low adaptability of feeding machines, a new intelligentaquaculture equipment based on real-time water quality parameters monitoring is designed and researched in thispaper.The equipment hardware is powered by solar energy and AC power, and it monitors water qualityparameters by sensors in real time.The mobile solar aerator uses ultrasonic ranging to avoid obstacles,and in thisway,it can walk randomly and expand the working scope.The smart solar-energy feeder uses weighing sensors forweighing feed,realizing precise quantitative feeding.The equipment software supports personal computers,mobilephones and other platform clients,realizing many functions such as real-time water quality parameters checking,remote aerating, remote feeding, and remote intelligent controlling. The pond application tests show that theequipment has higher reliability in water parameters monitoring and an instance messaging packet loss rate oflower than 0.2%;while guaranteeing the aerating capacity,it has an aerating area that is 10% larger than that oftraditional aerators;besides,it can realize precise quantitative feeding in good water environment.The researchshows that the application of this equipment would promote the development of intelligentization and automationin aquatic equipment,and the realization of energy saving and environmental protection.
出处
《渔业现代化》
北大核心
2017年第1期1-5,共5页
Fishery Modernization
基金
江苏省产学研联合创新资金项(BY2014123-03)
镇江市科技创新资金项目(NY2016010)
关键词
智能养殖装备
水质监测
智能增氧
精确投饲
intelligent aquaculture equipment
water quality monitoring
intelligent oxygen
accurate feeding