期刊文献+

基于遗传细菌觅食混合算法的电力系统无功优化 被引量:3

Reactive Power Optimization of Power System Based on Genetic/Bacteria Foraging Optimization Hybrid Algorithm
下载PDF
导出
摘要 为了使遗传算法(GA)和细菌觅食算法(BFO)的优点被保持,缺点被削弱,提出了电力系统无功优化的遗传细菌觅食混合算法(GA-BFO);在遗传算法中采用排序选择方式进行个体选择操作,保持了种群的多样性,避免陷入局部最优。用该混合算法对IEEE 30节点系统进行无功优化计算,并将优化结果和2种单一算法的优化结果进行了比较,结果表明GA-BFO算法具有良好的有效性和可行性。 In this paper,genetic bacteria foraging hybrid algorithm(GA-BFO for short)of reactive power optimization of power system is proposed so to remain the advantages of Genetic Algorithm(GA) and Bacteria Foraging Optimization(BFO)and weaken their defects. The way of sort selection is selected for individual selection operation so to main diversity of the population and avoid the local optimum. The reactive power optimization calculation is performed for IEEE 30 node by the hybrid algorithm and its optimization result is compared with that of two kinds of single algorithm. It is shown by the result that GA-BFO algorithm ha good effectiveness and feasibility.
出处 《电力电容器与无功补偿》 北大核心 2017年第1期105-109,共5页 Power Capacitor & Reactive Power Compensation
基金 国家自然科学基金项目资助(51367010)
关键词 无功优化 遗传算法 细菌觅食算法 排序选择 电力系统 reactive power optimization genetic algorithm bacteria foraging optimization selection sort power system
  • 相关文献

参考文献12

二级参考文献173

共引文献325

同被引文献27

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部