期刊文献+

正则(0,1)矩阵的行并存数

Row coincidence number of regular(0,1)-matrices
下载PDF
导出
摘要 正则(0,1)矩阵是具有固定线和的(0,1)矩阵,为了更好的了解正则(0,1)矩阵的组合性质,研究了正则(0,1)矩阵的行并存数问题,给出了正则(0,1)矩阵行并存数的上下界,说明了在某些情形下该上界是精确的.此外,确定了行并存数为1的正则(0,1)矩阵类的行列式与奇异值. A regular (0, 1)-matrix is a (0, 1)-matrix which has constant line sums. In order to better understand the combinatorial properties of regular(0,1)-matrices, the row coincidence number problem of regular(0,1)- matrices is studied, upper and lower bounds for the row coincidence number of regular(0,1)-matrices are given, which shows that the upper bound is precise in some cases. Moreover, the determinants and singular values of the regular classes of (0, 1)-matrices are determined whose row coincidence numbers are 1.
作者 钟金 谷芳芳
出处 《江西理工大学学报》 CAS 2017年第1期88-91,共4页 Journal of Jiangxi University of Science and Technology
基金 国家自然科学基金资助项目(11661041) 江西省自然科学基金资助项目(20161BAB211016) 江西省教育厅科技项目(GJJ150645)
关键词 正则(0 1)矩阵 行并存数 上下界 行列式 regular (0, 1)-matrix row coincidence number upper and lower bound determinant
  • 相关文献

参考文献3

二级参考文献29

  • 1仰枫帆,毕光国.一种求循环码对偶码的新方法[J].高校应用数学学报(A辑),1996,11(2):139-144. 被引量:1
  • 2张学俊,王海华.拟循环码的对偶码[J].苏州大学学报(自然科学版),2006,22(4):22-26. 被引量:1
  • 3Fallat S, Driessche P D. Maximum determinant of (0,1) matrices with certain constant row and column sums[J]. Linear and Multilin- ear Algebra, 1997,42(4) : 303-318.
  • 4Brualdi R A, Ryser H J. Combinatorial matrix theory[M]. London: Cambridge University Press, 1991 : 23-38.
  • 5Berman A, Plemmons R J. Nonnegative matrices in the mathematical sciences[M]. London: Academic Press, 1978:98-105.
  • 6West D B. Introduction to graph theory[M]. Upper Saddle River: Prentice Ha11,1996:78-90.
  • 7Hu Qi, Li Yaqin, Zhan Xingzhi. Possible numbers of ones in 0-1 matrices with given rank[J]. Linear and Multilinear Algebra,2005,53 (6) :435-443.
  • 8Sierksma G, Sterken E. The structure matrix of (0,1) matrices: its rank, trace, and eigenvalues. An application to economctnic models [J]. Linear Algebra Appl, 1986,83 : 151-166.
  • 9Daemen J,Rijmen V.The Wide Trail Design Strategy[EB/OL].(2001-03-12).http://130.203.133.150/viewdoc/summary?doi= 10.1.1.85.2588.
  • 10Wang Meiqin.Differential Cryptanalysis of Present[EB/OL].(2007-10-14).http://eprint.iacr.org/2007/408.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部