期刊文献+

基于级联卷积神经网络的人脸关键点定位 被引量:5

Facial Points Detection Based on Cascade Convolutional Neural Network
下载PDF
导出
摘要 由于人脸姿态、表情、遮挡物、光照问题的影响,人脸关键点检测时通常会出现较大的误差,为了准确且可靠地检测关键点,提出了一种基于级联卷积神经网络的方法。利用人脸检测器检测到的人脸图像作为输入,第一层卷积神经网络直接检测所有的5个人脸关键点。随后根据这些检测到的点裁剪出5个人脸局部图像,级联的第二层网络使用5个不同的卷积神经网络单独地定位每个点。在实验测试环节,级联卷积神经网络方法的使用将人脸关键点的平均定位误差降低到了1.264像素。在LFPW人脸数据库上的实验结果表明:该算法在定位准确性和可靠性上要优于单个CNN的方法以及其他方法,该算法在GPU(图形处理器)模式下处理一个人脸图像仅需15.9毫秒。 Suffered from facial pose, expressions, occlusions and illumination, there is usuallylager errorsin thefacial points detection. In order to detect facial points accurately and reliably, a method based on cascade convolutional network is proposed. Using the face image detected from face detector as input, all of 5 facial points are detected bythe first level CNN directly. After then 5 images from the facial points are cropped, and each of the points is predicted singly by the second level CNN with 5 different CNN. The mean error of all points is reduced to 1. 264 pixel in test phase by the cascade convolutional network method. The experiments on LFPW database show that this method outperforms single CNN method and many other methods in both detection accuracy and reliability. This method process one face image takes approximately 15.9 ms on a standard GPU (graphics processing unit).
作者 陈锐 林达
出处 《四川理工学院学报(自然科学版)》 CAS 2017年第1期32-37,共6页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 人脸关键点 卷积神经网络(CNN) 深度学习 facial points convolutional neural network (CNN) deep learning
  • 相关文献

参考文献1

二级参考文献16

  • 1Dantone M, Gall J, Fanelli G, et al. Real-time facial feature detection using conditional regression forests[C] //Proc of International Conference on Computer Vision and Pattern Recognition. 2012:2578-2585.
  • 2Zhang Wencong, Chen Hong, Yao Peng, et al. Precise eye localization with AdaBoost and fast radial symmetry[C] //Proc of International Conference on Computational Intelligence and Security. 2006:725-730.
  • 3Liu Xiaoming. Generic face alignment using boosted appearance mo-del[C] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2007:1-8 .
  • 4Lin Liang, Rong Xiao, Fang Wen, et al. Face alignment via component-based discriminative search[C] //Proc of the 10th European Conference on Computer Vision. 2008:72-85.
  • 5Huang Yuchi, Liu Qingshan, Metaxas D N, et al. A component-based framework for generalized face alignment systems[J] . IEEE Trans on Man, and Cybernetics:Part B, 2011, 41(1):287-298.
  • 6Hu Jiani, Li Yu, Deng Weihong, et al. Locating facial features by robust active shape model[C] //Proc of the 2nd IEEE International Conference on Network Infrastructure and Digital Content. 2010:196-200.
  • 7Xiong Pengfei, Huang Lei, Liu Changping. Initialization and pose alignment in active shape model[C] //Proc of the 20th International Conference on Pattern Recognition. 2010:3971-3974.
  • 8Lu Huchuan, Shi Wengang. Skin-active shape model for face alignment[C] //Proc of Computer Graphics, Imaging and Vision Confere-nce. 2005:187-190.
  • 9Lauer F, Suen C Y, Bloch G. A trainable feature extractor for handwritten digit recognition[J] . Pattern Recognition, 2007, 40(6):1816-1824.
  • 10Ahranjany S S, Razzazi F, Ghassemian M H. A very high accuracy handwritten character recognition system for Farsi/Arabic digits using convolutional neural networks[C] //Proc of the 5th IEEE Internatio-nal Conference on Bio-Inspired Computing:Theories and Applications. 2010:1585-1592.

共引文献26

同被引文献27

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部