期刊文献+

Statistical analyses for NANOGrav 5-year timing residuals

Statistical analyses for NANOGrav 5-year timing residuals
下载PDF
导出
摘要 In pulsar timing, timing residuals are the differences between the observed times of arrival and predictions from the timing model. A comprehensive timing model will produce featureless resid- uals, which are presumably composed of dominating noise and weak physical effects excluded from the timing model (e.g. gravitational waves). In order to apply optimal statistical methods for detecting weak gravitational wave signals, we need to know the statistical properties of noise components in the residuals. In this paper we utilize a variety of non-parametric statistical tests to analyze the whiteness and Gaussianity of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 5- year timing data, which are obtained from Arecibo Observatory and Green Bank Telescope from 2005 to 2010. We find that most of the data are consistent with white noise; many data deviate from Gaussianity at different levels, nevertheless, removing outliers in some pulsars will mitigate the deviations. In pulsar timing, timing residuals are the differences between the observed times of arrival and predictions from the timing model. A comprehensive timing model will produce featureless resid- uals, which are presumably composed of dominating noise and weak physical effects excluded from the timing model (e.g. gravitational waves). In order to apply optimal statistical methods for detecting weak gravitational wave signals, we need to know the statistical properties of noise components in the residuals. In this paper we utilize a variety of non-parametric statistical tests to analyze the whiteness and Gaussianity of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 5- year timing data, which are obtained from Arecibo Observatory and Green Bank Telescope from 2005 to 2010. We find that most of the data are consistent with white noise; many data deviate from Gaussianity at different levels, nevertheless, removing outliers in some pulsars will mitigate the deviations.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2017年第2期63-76,共14页 天文和天体物理学研究(英文版)
基金 supported by the National Science Foundation(NSF)under PIRE grant0968296 support by the National Natural Science Foundation of China(Grant Nos.11503007,91636111 and 11690021) partial support through the New York Space Grant Consortium support by NASA through the Einstein Fellowship grant PF4-150120 upport from the JPL RTD program
关键词 pulsar timing array general -- statistical tests pulsar timing array general -- statistical tests
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部