期刊文献+

非零远场条件下非线性薛定谔方程的数值模拟

NUMERICAL METHOD FOR COMPUTING ROGUE WAVE IN NONZERO FAR FIELD
原文传递
导出
摘要 针对非零远场条件下非线性薛定谔方程的怪波问题,本文给出了一种有效的Crank-Nicolson差分方法.根据远场渐近行为,设定合理的人工边界条件,给出了在该边界条件下质量和能量的定义式,理论上证明了数值格式对质量和能量的守恒.最后,数值算例说明了该格式具有时空二阶精度,同时验证了质量和能量守恒. We present an efficient numerical method which is Crank-Nicolson difference method for computing rogue wave of nonlinear Schrodinger equation in nonzero far field. Based on the far field asymptotic behavior, we design reasonable artificial boundary conditions, define the modified mass and energy and prove that the modified mass and energy are conserved. At last, Numerical examples show that the method is second-order accurate in both space and time and conserves the mass and energy in discrete level.
作者 任彩风 华冬英 李书存 Ren Caifeng Hu Dongying Li Shucun(School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China)
出处 《数值计算与计算机应用》 2017年第1期26-36,共11页 Journal on Numerical Methods and Computer Applications
基金 Beijing Natural Science Foundation under Grant No.1153004
关键词 怪波 非线性薛定谔方程 Crank—Nicolson差分方法 Rogue wave Nonlinear Schrodinger equation Crank-Nicolson difference method
  • 相关文献

参考文献1

二级参考文献8

  • 1Ankiewicz, A., Clarkson, P.A., Akhmediev, N., Rogue waves, rational solutions, the Patterns of their zeros and integral ralations, J. Phys. A: Math. Theor., 2010, 43: 122002.
  • 2Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M., Rogue waves and rational solutions of the nonlinear Schrodinger equation, Phys. Rev. E., 2009, 80: 026601.
  • 3Lin F., Lin T.C., Vortices in two dimensional Bose-Einstein Condensates. Geometry and nonlinear par- tial differential equations, Hangzhou, 2001, 87, 114, AMS/IP Stud. Adv. Math. 29, Amer. Math. Soc. Providence, RI, 2002.
  • 4Chen J., Guo B., Strong instability of standing waves for a nonlocal Schrodinger equation, Physica D, 2007, 227: 142-148.
  • 5Guo B., Ling L., General rational solutions and novel soliton solutions for the nonlinear Schrodinger equation, Submitted.
  • 6谷超豪,郭柏灵等.孤立子理论及其应用,第一章,杭州:浙江科技出版社,1999.
  • 7Chen C. and Guo B., Solution theory of the coupled time-dependent Ginzburg-Landan equations, Interna- tional Journal of Dynamical Systems and Differential Equations, 2009, 2.
  • 8Yah Z., Financial rogue wave, Commun. Theor. Phys., 2010, 54: 947-949.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部