期刊文献+

基于微分搜索的高光谱图像非线性解混算法 被引量:6

Nonlinear Unmixing of Hyperspectral Images Based on Differential Search Algorithm
下载PDF
导出
摘要 针对线性混合模型在实际高光谱图像解混过程中的局限性,提出一种新的基于微分搜索的非线性高光谱图像解混算法.在广义双线性模型的基础上采用重构误差作为解混的目标函数,将非线性解混问题转化为最优化问题.将目标函数中的待求参数映射为微分搜索过程中的位置变量,利用微分搜索算法对目标函数进行优化求解.在求解过程中,通过执行搜索范围控制等机制满足高光谱图像解混的约束要求,进而求得丰度系数和非线性参数,实现非线性高光谱图像解混.仿真数据和真实遥感数据实验结果表明,所提出的非线性解混算法可以有效克服线性模型下解混算法的局限性,避免了由于使用梯度类优化方法而易陷入局部收敛的问题,较之其它高光谱图像解混算法具有更好的解混精度. A novel nonlinear hyperspectral image unmixing algorithm based on differential search is proposed for solving the limitations of linear mixing model.The reconstruction error is used as the objective function for unmixing based on generalized bilinear model and the nonlinear unmixing is transformed into the optimization problem.The parameters in objective function are mapped onto the location variables of the search process and the differential search algorithm is used to optimize the objective function.In the optimization process,the constraint conditions for hyperspectral image unmixing are fulfilled by implementing the search range controlling strategy.And then,the abundance and the nonlinear parameters for unmixing can be obtained.Experiments on synthetic data and real data validate that the proposed nonlinear unmixing algorithm can effectively overcome the limitations of linear unmixing algorithm,as well as the local convergence of gradient optimization method,and the performance of the proposed algorithm is better than other state-of-the-art hyperspectral image unmixing algorithms.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第2期337-345,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61401307) 中国博士后科学基金(No.2014M561184) 天津市应用基础与前沿技术研究计划项目(No15JCYBJC17100)
关键词 高光谱图像 谱解混 非线性模型 群智能优化 微分搜索算法 hyperspectral images spectral unmixing nonlinear model swarm intelligence optimization differential search algorithm
  • 相关文献

参考文献2

二级参考文献29

  • 1Iordache M D, Bioucas-dias J M, Plaza A. Sparse unmixing of hyperspectml data [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(6) : 2014 - 2039.
  • 2Settle J J, Drake N A. Linear mixing and the estimation of ground cover proportions [ J ]. International Journal of Remote Sensing, 1993,14(6) : 1159 - 1177.
  • 3Miao L, Qi H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factor- ization[ J 1.1EEE Transactions on Geoscience and Remote Sens- ing,2007,45(3) :765 - 777.
  • 4Winter M E. N-FqNDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data[ A]. Proc SP1E Image Spectrometry V [C]. USA: SPIE, 1999. 266 - 277.
  • 5Nascimento J M P, Bioucas-dias J M. Vertex component analy- sis: A fast algorithm to unmix hyperspectral data [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(4) : 898 - 910.
  • 6Jun L, Bioucas-dias J M. Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data[A]. IEEE Interna- tional Geoscience and Remote Sensing Symposium, 1GARSS [ C]. Boston: IEEE, 2008.250 - 253.
  • 7Bioucas-dias J M. A variable splitting augmented Lagrangian approach to linear spectral unmixing[A]. Workshop on Hyper- spectral Image and Signal Processing: Evolution in RemoteSensing, WHISPERS [C]. Grenoble: IEEE, 2009.1 - 4.
  • 8Lee D D, Seung H S. Learning the parts of objects by nonnega- five matrix factorization [ J ]. Natures, 1999,401 (6755) : 788 - 791.
  • 9Lin C J. Projected gradient methods for nonnegative matrix factorization[J]. Neural Computation. 2009 (10) : 2756 - 2779.
  • 10Gabay D, Mercier B. A dual algorithm for the solulion of non- linear variational problems via finite element approximations [ J]. Comp and Math Appl, 1976,2( 1 ) : 17 - 40.

共引文献16

同被引文献14

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部