期刊文献+

基于集成学习的室性早博识别方法 被引量:8

PVC Recognition Algorithm Based on Ensemble Learning
下载PDF
导出
摘要 本文提出了一种集成学习方法以提升室性早搏的识别性能.MIT-BIH两个通道的数据分别经过卷积神经网络进行室性早搏心拍分类,然后按照融合规则对分类结果进行融合决策,其准确率、灵敏度和特异性分别为99.91%、98.76%、99.97%,优于已有算法的室性早搏心拍分类结果.此外,面向临床应用,本文还利用卷积神经网络和诊断规则相结合的方法实现了病人间室性早搏识别实验,在有14万多条记录的数据集上,取得的准确率、灵敏度及特异性分别为97.87%、87.94%、98.02%,验证了该算法的有效性. In order to improve the recognition performance of premature ventricular contraction(PVC),this paper reports an algorithm based on ensemble learning.First,the tow-lead ECG signals from the MIT-BIH Arrhythmia database are classified into PVC and non PVC beats using lead convolutional neural network(LCNN) classifier.Then the results are fused with some rules.The accuracy,sensitivity and specificity of the proposed algorithm are 99.91%,98.76%and 99.97%,respectively,which are better than that of other existing algorithms for PVC beats classification.In addition,this paper realizes an inter-patient PVC recognition experiment by combining LCNN and diagnostic rules for clinical application.The effectiveness of the proposed algorithm has been confirmed by the accuracy(97.87%),sensitivity(87.94%) and specificity(98.02%) with the data set over 140000 ECG records.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第2期501-507,共7页 Acta Electronica Sinica
关键词 室性早搏 卷积神经网络 诊断规则 premature ventricular contraction(PVC) lead convolutional neural network(LCNN) diagnosis rules
  • 相关文献

参考文献4

二级参考文献17

  • 1蔡坤,陆尧胜.基于中值滤波的心电基线校正方法的研究[J].中国医疗设备,2004,22(2):5-7. 被引量:19
  • 2Lander P,Berbari E J. Time-frequency plane wiener filtering of the high-resolution ECG: development and application[J].IEEE Trans Biomed Eng,2007,44(4) :256 - 265.
  • 3Sameni R, ShamsoUahi M B, Jutten C, et al. Filtering noisy signals using the extended Kalman filter based on a modified dynamic ECG model[ A]. Proceedings of the 32nd Annual International Conference on Computers in Cardiology[ C]. Lyon,France,2005. 1017- 1020.
  • 4Sahakian A V,Furno G F.An adaptive filter for distorted linefrequency noise[J].Bimed SCi Instrum, 1983,19-47- 52.
  • 5Donoho D L.De-noising by sofi-thresholding[J]. IEEE Transactions on Infomaafion Theory. 1995,41 (3) : 613 - 627.
  • 6Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary lime series analysis[J] .Proc R Soc London,A( 1998), 454: 903 - 995.
  • 7Sun Y,Chan K L,Krishnan S M.ECG Signal conditioning by morphological filtering [ J ]. Computers in Biology and Medicine,2002,32(6) :465 - 479.
  • 8M L Ahlstrom.W J Tompkins.Digital filters for real-time ECG signal processing using microprocessors[J].IEEE Transaction on Biomedical engineering,1985,32(9):708—713.
  • 9Patrick S Hamilton,Willis J Tompkins.Quantitative inverstigation of QRS detection rules using the MIT/BIH arrhythmia database[J].IEEE Transaction on Biomedical engineering,1986,33(12):1157—1165.
  • 10David L Donoho, Lain M Johnstone. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994,81,3:425 - 455.

共引文献117

同被引文献40

引证文献8

二级引证文献1766

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部